Page 36 - TD-3-1
P. 36

Tumor Discovery                                                       AI uncovers tumor spatial organization



            12.  Bu Z, Li HJ, Zhang C, et al. Graph K-means based on leader   21.  Long Y, Ang KS, Li M, et al. Spatially informed clustering,
               identification, dynamic game, and opinion dynamics. IEEE   integration, and deconvolution of spatial transcriptomics
               Trans Knowl Data Eng. 2020;32:1348-1361.           with GraphST. Nat Commun. 2023;14:1155.
               doi: 10.1109/TKDE.2019.2903712                     doi: 10.1038/s41467-023-36796-3
            13.  Dries R, Zhu Q, Dong R,  et  al. Giotto: A  toolbox for   22.  Thomas NK, Welling, M. Variational Graph Auto-Encoders.
               integrative analysis and visualization of spatial expression   [arXiv Preprint] arXiv. 2016;2:1611.07308.
               data. Genome Biol. 2021;22:78.
                                                                  doi: 10.48550/arXiv.1611.07308
               doi: 10.1186/s13059-021-02286-2
                                                               23.  Fey M, Lenssen JE. Fast graph representation learning with
            14.  Pham D, Tan X, Balderson B,  et al. Robust mapping of   pytorch geometric. [arXiv Preprint] arXiv. 2019;1903.02428.
               spatiotemporal trajectories and cell–cell interactions in
               healthy and diseased tissues. Nat Commun. 2023;14:7739.      doi: 10.48550/arXiv.1903.02428
               doi: 10.1038/s41467-023-43120-6                 24.  Wu F, Souza A, Zhang T,  et al. Simplifying  Graph
                                                                  Convolutional Networks. In:  International Conference
            15.  Zhao E, Stone MR, Ren X,  et  al. Spatial transcriptomics   on Machine Learning. Vol.  97. New  York: PMLR; 2019.
               at subspot resolution with BayesSpace.  Nat Biotechnol.   p. 6861-6871.
               2021;39:1375-1384.
                                                                  doi: 10.48550/arXiv.1902.07153
               doi: 10.1038/s41587-021-00935-2
                                                               25.  Pardo B, Spangler A, Weber LM,  et al. SpatialLIBD: An
            16.  Liu Y, Wang T, Duggan B, Sharpnack M, Huang K,   R/Bioconductor package to visualize spatially-resolved
               Zhang J,  et al. SPCS: A  spatial and pattern combined   transcriptomics data. BMC Genomics. 2022;23(1):1-5.
               smoothing method for spatial transcriptomic expression.
               Brief Bioinform. 2022;23:bbac116.                  doi: 10.1186/s12864-022-08601-w
               doi: 10.1093/bib/bbac116                        26.  Xu H, Fu H, Long Y, et al. Unsupervised spatially embedded
                                                                  deep representation of spatial transcriptomics.  Genome
            17.  Wu Z, Pan S, Chen F,  et al. A  comprehensive survey on   Med. 2024;16:12.
               graph neural networks. IEEE Trans Neural Netw Learn Syst.
               2021;32:4-24.                                      doi: 10.1186/s13073-024-01283-x
               doi: 10.1109/TNNLS.2020.2978386                 27.  Wolf FA, Angerer P, Theis FJ. SCANPY: Large-scale single-
                                                                  cell gene expression data analysis. Genome Biol. 2018;19:15.
            18.  Hu J, Li X, Coleman K, et al. 2021. SpaGCN: Integrating gene
               expression, spatial location and histology to identify spatial      doi: 10.1186/s13059-017-1382-0
               domains and spatially variable genes by graph convolutional   28.  Pedregosa F, Varoquaux G, Gramfort A,  et al. Scikit-
               network. Nat Methods. 18:1342-1351.                learn: Machine learning in python.  J  Mach Learn Res.
               doi: 10.1038/s41592-021-01255-8                    2011;12:2825-2830.
            19.  Li J, Chen S, Pan X,  et al. Cell clustering for spatial   29.  Addagarla SK, Amalanathan A. Probabilistic unsupervised
               transcriptomics data with  graph neural networks.  Nat   machine learning approach for a similar image recommender
               Comput Sci. 2022;2:399-408.                        system for e-commerce. Symmetry. 2020;12:1783.
               doi: 10.1038/s43588-022-00266-5                    doi: 10.3390/sym12111783
            20.  Dong K, Zhang S. Deciphering spatial domains from   30.  Xu C, Jin X, Wei S, et al. DeepST: Identifying spatial domains
               spatially resolved transcriptomics with an adaptive  graph   in spatial transcriptomics by deep learning.  Nucleic Acids
               attention auto-encoder. Nat Commun. 2022;13:1739.  Res. 2022;50:e131.
               doi: 10.1038/s41467-022-29439-6                    doi: 10.1093/nar/gkac901


















            Volume 3 Issue 1 (2024)                         10                         https://doi.org/10.36922/td.2049
   31   32   33   34   35   36   37   38   39   40   41