Page 36 - TD-3-1
P. 36
Tumor Discovery AI uncovers tumor spatial organization
12. Bu Z, Li HJ, Zhang C, et al. Graph K-means based on leader 21. Long Y, Ang KS, Li M, et al. Spatially informed clustering,
identification, dynamic game, and opinion dynamics. IEEE integration, and deconvolution of spatial transcriptomics
Trans Knowl Data Eng. 2020;32:1348-1361. with GraphST. Nat Commun. 2023;14:1155.
doi: 10.1109/TKDE.2019.2903712 doi: 10.1038/s41467-023-36796-3
13. Dries R, Zhu Q, Dong R, et al. Giotto: A toolbox for 22. Thomas NK, Welling, M. Variational Graph Auto-Encoders.
integrative analysis and visualization of spatial expression [arXiv Preprint] arXiv. 2016;2:1611.07308.
data. Genome Biol. 2021;22:78.
doi: 10.48550/arXiv.1611.07308
doi: 10.1186/s13059-021-02286-2
23. Fey M, Lenssen JE. Fast graph representation learning with
14. Pham D, Tan X, Balderson B, et al. Robust mapping of pytorch geometric. [arXiv Preprint] arXiv. 2019;1903.02428.
spatiotemporal trajectories and cell–cell interactions in
healthy and diseased tissues. Nat Commun. 2023;14:7739. doi: 10.48550/arXiv.1903.02428
doi: 10.1038/s41467-023-43120-6 24. Wu F, Souza A, Zhang T, et al. Simplifying Graph
Convolutional Networks. In: International Conference
15. Zhao E, Stone MR, Ren X, et al. Spatial transcriptomics on Machine Learning. Vol. 97. New York: PMLR; 2019.
at subspot resolution with BayesSpace. Nat Biotechnol. p. 6861-6871.
2021;39:1375-1384.
doi: 10.48550/arXiv.1902.07153
doi: 10.1038/s41587-021-00935-2
25. Pardo B, Spangler A, Weber LM, et al. SpatialLIBD: An
16. Liu Y, Wang T, Duggan B, Sharpnack M, Huang K, R/Bioconductor package to visualize spatially-resolved
Zhang J, et al. SPCS: A spatial and pattern combined transcriptomics data. BMC Genomics. 2022;23(1):1-5.
smoothing method for spatial transcriptomic expression.
Brief Bioinform. 2022;23:bbac116. doi: 10.1186/s12864-022-08601-w
doi: 10.1093/bib/bbac116 26. Xu H, Fu H, Long Y, et al. Unsupervised spatially embedded
deep representation of spatial transcriptomics. Genome
17. Wu Z, Pan S, Chen F, et al. A comprehensive survey on Med. 2024;16:12.
graph neural networks. IEEE Trans Neural Netw Learn Syst.
2021;32:4-24. doi: 10.1186/s13073-024-01283-x
doi: 10.1109/TNNLS.2020.2978386 27. Wolf FA, Angerer P, Theis FJ. SCANPY: Large-scale single-
cell gene expression data analysis. Genome Biol. 2018;19:15.
18. Hu J, Li X, Coleman K, et al. 2021. SpaGCN: Integrating gene
expression, spatial location and histology to identify spatial doi: 10.1186/s13059-017-1382-0
domains and spatially variable genes by graph convolutional 28. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-
network. Nat Methods. 18:1342-1351. learn: Machine learning in python. J Mach Learn Res.
doi: 10.1038/s41592-021-01255-8 2011;12:2825-2830.
19. Li J, Chen S, Pan X, et al. Cell clustering for spatial 29. Addagarla SK, Amalanathan A. Probabilistic unsupervised
transcriptomics data with graph neural networks. Nat machine learning approach for a similar image recommender
Comput Sci. 2022;2:399-408. system for e-commerce. Symmetry. 2020;12:1783.
doi: 10.1038/s43588-022-00266-5 doi: 10.3390/sym12111783
20. Dong K, Zhang S. Deciphering spatial domains from 30. Xu C, Jin X, Wei S, et al. DeepST: Identifying spatial domains
spatially resolved transcriptomics with an adaptive graph in spatial transcriptomics by deep learning. Nucleic Acids
attention auto-encoder. Nat Commun. 2022;13:1739. Res. 2022;50:e131.
doi: 10.1038/s41467-022-29439-6 doi: 10.1093/nar/gkac901
Volume 3 Issue 1 (2024) 10 https://doi.org/10.36922/td.2049

