Page 88 - TD-4-2
P. 88

Tumor Discovery                                                       DRGs in HCC prognosis and immunity



               associated expression pattern in breast cancer based on   20.  Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics,
               machine learning. Front Genet. 2023;14:1193944.    2022. CA Cancer J Clin. 2022;72(1):7-33.
               doi: 10.3389/fgene.2023.1193944                    doi: 10.3322/caac.21708
            10.  Li M, Wang J, Zhao Y, et al. Identifying and evaluating a   21.  Tang Y, Zhang Y, Hu X. Identification of potential hub genes
               disulfidptosis-related  gene  signature  to  predict  prognosis   related to diagnosis and prognosis of hepatitis B virus-related
               in colorectal adenocarcinoma patients.  Front Immunol.   hepatocellular carcinoma via integrated bioinformatics
               2024;15:1344637.                                   analysis. Biomed Res Int. 2020;2020:4251761.
               doi: 10.3389/fimmu.2024.1344637                    doi: 10.1155/2020/4251761
            11.  Li XM, Liu SP, Li Y, Cai XM, Zhang SB, Xie ZF. Identification   22.  Xu K, Zhang Y, Yan Z,  et al. Identification of
               of disulfidptosis-related genes with immune infiltration in   disulfidptosis  related  subtypes,  characterization  of  tumor
               hepatocellular carcinoma. Heliyon. 2023;9(8):e18436.  microenvironment infiltration, and development of DRG
                                                                  prognostic prediction model in RCC, in which MSH3 is a key
               doi: 10.1016/j.heliyon.2023.e18436                 gene during disulfidptosis. Front Immunol. 2023;14:1205250.
            12.  Wada F, Koga H, Akiba J, et al. High expression of CD44v9 and      doi: 10.3389/fimmu.2023.1205250
               xCT in chemoresistant hepatocellular carcinoma: Potential
               targets by sulfasalazine. Cancer Sci. 2018;109(9):2801-2810.  23.  Zhang C, Zhang X, Dai S, Yang W. Exploring prognosis
                                                                  and therapeutic strategies for HBV-HCC patients based on
               doi: 10.1111/cas.13728                             disulfidptosis-related genes. Front Genet. 2024;15:1522484.
            13.  Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/     doi: 10.3389/fgene.2024.1522484
               xCT in cancer: Ferroptosis, nutrient dependency, and cancer
               therapy. Protein Cell. 2021;12(8):599-620.      24.  Ai J, Huang H, Lv X, et al. FLNA and PGK1 are two potential
                                                                  markers for progression in hepatocellular carcinoma.  Cell
               doi: 10.1007/s13238-020-00789-5                    Physiol Biochem. 2011;27(3-4):207-216.
            14.  Zhu JH, De Mello RA, Yan QL, et al. MiR-139-5p/SLC7A11      doi: 10.1159/000327946
               inhibits the proliferation, invasion and metastasis of
               pancreatic carcinoma via PI3K/Akt signaling pathway.   25.  Patarat R, Riku S, Kunadirek P,  et al. The expression of
               Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165747.  FLNA and CLU in PBMCs as a novel screening marker for
                                                                  hepatocellular carcinoma. Sci Rep. 2021;11(1):14838.
               doi: 10.1016/j.bbadis.2020.165747
                                                                  doi: 10.1038/s41598-021-94330-1
            15.  Machesky LM. Deadly actin collapse by disulfidptosis. Nat   26.  Li W, Li M, Liao D, et al. Carboxyl-terminal truncated HBx
               Cell Biol. 2023;25(3):375-376.                     contributes to invasion and metastasis via deregulating
               doi: 10.1038/s41556-023-01100-4                    metastasis suppressors in hepatocellular carcinoma.
                                                                  Oncotarget. 2016;7(34):55110-55127.
            16.  Zheng P, Zhou C, Ding Y, Duan S. Disulfidptosis: A new
               target for metabolic cancer therapy. J Exp Clin Cancer Res.      doi: 10.18632/oncotarget.10399
               2023;42(1):103.                                 27.  Li Y, Xu C, Sun B, Zhong F, Cao M, Yang L. Sema3d
               doi: 10.1186/s13046-023-02675-4                    restrained hepatocellular carcinoma progression through
                                                                  inactivating Pi3k/Akt signaling via interaction with FLNA.
            17.  Ji PY, Li ZY, Wang H, Dong JT, Li XJ, Yi HL. Arsenic and   Front Oncol. 2022;12:913498.
               sulfur dioxide co-exposure induce renal injury via activation
               of the NF-κB and caspase signaling pathway. Chemosphere.      doi: 10.3389/fonc.2022.913498
               2019;224:280-288.                               28.  Donadon  M, Di  Tommaso  L,  Soldani  C,  et al.  Filamin
               doi: 10.1016/j.chemosphere.2019.02.111             a expression predicts early recurrence of hepatocellular
                                                                  carcinoma after hepatectomy. Liver Int. 2018;38(2):303-311.
            18.  Oduro PK, Zheng X, Wei J, et al. The cGAS-STING signaling
               in cardiovascular and metabolic diseases: Future novel      doi: 10.1111/liv.13522
               target option for pharmacotherapy.  Acta Pharm Sin B.   29.  Sheng F, Chen KX, Liu J, et al. Chromium (VI) promotes
               2022;12(1):50-75.                                  EMT by regulating FLNA in BLCA.  Environ Toxicol.
               doi: 10.1016/j.apsb.2021.05.011                    2021;36(8):1694-1701.
            19.  Hu FF, Liu CJ, Liu LL, Zhang Q, Guo AY. Expression      doi: 10.1002/tox.23165
               profile of immune checkpoint genes and their roles in   30.  Ren Q, You Yu S. CD2-associated protein participates in
               predicting  immunotherapy  response.  Brief Bioinform.   podocyte apoptosis via PI3K/Akt signaling pathway. J Recept
               2021;22(3):bbaa176.                                Signal Transduct Res. 2016;36(3):288-291.
               doi: 10.1093/bib/bbaa176                           doi: 10.3109/10799893.2015.1101137


            Volume 4 Issue 2 (2025)                         80                                doi: 10.36922/td.8214
   83   84   85   86   87   88   89   90   91   92   93