Page 65 - AIH-1-4
P. 65

Artificial Intelligence in Health                                   A fuzzy system for heartbeat classification



            Conflict of interest                                  classification approach using LDA with an enhanced SVM
                                                                  method for ECG signals in cloud computing.  Multimedia
            The authors declare they have no competing interests.  Tools Applic. 2018;77:10195-10215.
            Author contributions                                  doi: 10.1007/s11042-017-5318-1

            Conceptualization: All authors                     8.   Sharma P, Ray KC. Efficient methodology for
            Investigation: Roghayeh Rafieisangari                 electrocardiogram beat classification.  IET  Signal Process.
                                                                  2016;10(7):825-832.
            Methodology: Nabiollah Shiri
            Writing – original draft: Roghayeh Rafieisangari      doi: 10.1049/iet-spr.2015.0274
            Writing – review & editing: Nabiollah Shiri        9.   Übeyli ED. Adaptive neuro-fuzzy inference system for
                                                                  classification  of ECG  signals  using Lyapunov  exponents.
            Ethics approval and consent to participate            Comput Methods Programs Biomed. 2009;93:313-321.

            Not applicable.                                       doi: 10.1016/j.cmpb.2008.10.012
            Consent for publication                            10.  Zhang L, Peng H, Yu C. An approach for ECG Classification
                                                                  Based on Wavelet Feature Extraction and Decision Tree. In:
            Not applicable.                                       2010 International Conference on Wireless Communications
                                                                  and Signal Processing. 2010. p. 1-4.
            Availability of data
                                                                  doi: 10.1109/WCSP.2010.5633782
            The dataset used in this study, the MIT-BIH Arrhythmia   11.  Karpagachelvi S, Arthanari M, Sivakumar M. Classification
            Database, was expanded on February 24, 2005, and is   of electrocardiogram signals with support vector machines
            now freely available on PhysioNet. The dataset can be   and extreme learning machine.  Neural Comput Applic.
            accessed through the following link: MIT-BIH Arrhythmia   2012;21:1331-1339.
            Database.
                                                                  doi: 10.1007/s00521-011-0572-z
            References                                         12.  El-Saadawy H, Tantawi M, Shedeed HA, Tolba MF. Hybrid
            1.  Aziz  S,  Ahmed  S,  Alouini  MA.  ECGbased       hierarchical method for electrocardiogram heartbeat
               machinelearning algorithms for heartbeat classification. Sci   classification. IET Signal Process. 2018;12(4):506-513.
               Rep. 2021;11:18738.                                doi: 10.1049/iet-spr.2017.0108
               doi: 10.1038/s41598-021-97118-5                 13.  Chikh  MA,  Ammar  M,  Marouf  R.  A  neuro-fuzzy
            2.   Khan F, Yu X, Yuan Z, Rehman A. ECG classification using   identification of ECG beats. J Med Syst. 2012;36:903-914.
               1-D convolutional deep residual neural network. PLOS One.      doi: 10.1007/s10916-010-9554-4
               2023;18:e0284791.
                                                               14.  Gupta A, Thomas B, Kumar P, Kumar S, Kumar Y. Neural Network
               doi: 10.1371/journal.pone.0284791                  based Indicative ECG Classification. In: 2014 5  International
                                                                                                   th
            3.   Weimann  K,  Conrad  TO.  Transfer  learning  for  ECG   Conference  -  Confluence The Next Generation Information
               classification. Sci Rep. 2021;11:5251.             Technology Summit. 2014. p. 277-279.
               doi: 10.1038/s41598-021-84374-8                    doi: 10.1109/CONFLUENCE.2014.6949262
            4.   Cheng J, Zou Q, Zhao Y. ECG signal classification based   15.  Banerjee S, Mitra M. Application of cross wavelet transform
               on deep CNN and BiLSTM. BMC Med Inform Decis Mak.   for ECG  pattern analysis and classification.  IEEE Trans
               2021;21:365.                                       Instrument  Measure. 2014;63(2):326-333.
               doi: 10.1186/s12911-021-01736-y                    doi: 10.1109/TIM.2013.2279001
            5.   Sumathi S, Lilly Beaulah H, Vanithamani R. A  wavelet   16.  Bouaziz F, Oulhadj H, Boutana D, Siarry P. Automatic ECG
               transform based feature extraction and classification of   arrhythmias classification scheme based on  the conjoint
               cardiac disorder. J Med Syst. 2014;38:98.          use of the multi-layer perceptron neural network and a
                                                                  new improved metaheuristic approach. IET Signal Process.
               doi: 10.1007/s10916-014-0098-x                     2019;13(8):726-735.
            6.   Leite JP, Moreno RL. Heartbeat classification with low      doi: 10.1049/iet-spr.2018.5465
               computational cost using Hjorth parameters.  IET  Signal
               Process. 2018;12(4):431-438.                    17.  Sahoo S, Kanungo B, Behera S, Sabut S. Multiresolution
                                                                  wavelet transform based feature extraction and ECG
               doi: 10.1049/iet-spr.2017.0296
                                                                  classification to detect cardiac abnormalities. Measurement.
            7.   Varatharajan R, Manogaran G, Priyan MK. A  big data   2017;108:55-66.


            Volume 1 Issue 4 (2024)                         59                               doi: 10.36922/aih.3367
   60   61   62   63   64   65   66   67   68   69   70