Page 65 - AIH-1-4
P. 65
Artificial Intelligence in Health A fuzzy system for heartbeat classification
Conflict of interest classification approach using LDA with an enhanced SVM
method for ECG signals in cloud computing. Multimedia
The authors declare they have no competing interests. Tools Applic. 2018;77:10195-10215.
Author contributions doi: 10.1007/s11042-017-5318-1
Conceptualization: All authors 8. Sharma P, Ray KC. Efficient methodology for
Investigation: Roghayeh Rafieisangari electrocardiogram beat classification. IET Signal Process.
2016;10(7):825-832.
Methodology: Nabiollah Shiri
Writing – original draft: Roghayeh Rafieisangari doi: 10.1049/iet-spr.2015.0274
Writing – review & editing: Nabiollah Shiri 9. Übeyli ED. Adaptive neuro-fuzzy inference system for
classification of ECG signals using Lyapunov exponents.
Ethics approval and consent to participate Comput Methods Programs Biomed. 2009;93:313-321.
Not applicable. doi: 10.1016/j.cmpb.2008.10.012
Consent for publication 10. Zhang L, Peng H, Yu C. An approach for ECG Classification
Based on Wavelet Feature Extraction and Decision Tree. In:
Not applicable. 2010 International Conference on Wireless Communications
and Signal Processing. 2010. p. 1-4.
Availability of data
doi: 10.1109/WCSP.2010.5633782
The dataset used in this study, the MIT-BIH Arrhythmia 11. Karpagachelvi S, Arthanari M, Sivakumar M. Classification
Database, was expanded on February 24, 2005, and is of electrocardiogram signals with support vector machines
now freely available on PhysioNet. The dataset can be and extreme learning machine. Neural Comput Applic.
accessed through the following link: MIT-BIH Arrhythmia 2012;21:1331-1339.
Database.
doi: 10.1007/s00521-011-0572-z
References 12. El-Saadawy H, Tantawi M, Shedeed HA, Tolba MF. Hybrid
1. Aziz S, Ahmed S, Alouini MA. ECGbased hierarchical method for electrocardiogram heartbeat
machinelearning algorithms for heartbeat classification. Sci classification. IET Signal Process. 2018;12(4):506-513.
Rep. 2021;11:18738. doi: 10.1049/iet-spr.2017.0108
doi: 10.1038/s41598-021-97118-5 13. Chikh MA, Ammar M, Marouf R. A neuro-fuzzy
2. Khan F, Yu X, Yuan Z, Rehman A. ECG classification using identification of ECG beats. J Med Syst. 2012;36:903-914.
1-D convolutional deep residual neural network. PLOS One. doi: 10.1007/s10916-010-9554-4
2023;18:e0284791.
14. Gupta A, Thomas B, Kumar P, Kumar S, Kumar Y. Neural Network
doi: 10.1371/journal.pone.0284791 based Indicative ECG Classification. In: 2014 5 International
th
3. Weimann K, Conrad TO. Transfer learning for ECG Conference - Confluence The Next Generation Information
classification. Sci Rep. 2021;11:5251. Technology Summit. 2014. p. 277-279.
doi: 10.1038/s41598-021-84374-8 doi: 10.1109/CONFLUENCE.2014.6949262
4. Cheng J, Zou Q, Zhao Y. ECG signal classification based 15. Banerjee S, Mitra M. Application of cross wavelet transform
on deep CNN and BiLSTM. BMC Med Inform Decis Mak. for ECG pattern analysis and classification. IEEE Trans
2021;21:365. Instrument Measure. 2014;63(2):326-333.
doi: 10.1186/s12911-021-01736-y doi: 10.1109/TIM.2013.2279001
5. Sumathi S, Lilly Beaulah H, Vanithamani R. A wavelet 16. Bouaziz F, Oulhadj H, Boutana D, Siarry P. Automatic ECG
transform based feature extraction and classification of arrhythmias classification scheme based on the conjoint
cardiac disorder. J Med Syst. 2014;38:98. use of the multi-layer perceptron neural network and a
new improved metaheuristic approach. IET Signal Process.
doi: 10.1007/s10916-014-0098-x 2019;13(8):726-735.
6. Leite JP, Moreno RL. Heartbeat classification with low doi: 10.1049/iet-spr.2018.5465
computational cost using Hjorth parameters. IET Signal
Process. 2018;12(4):431-438. 17. Sahoo S, Kanungo B, Behera S, Sabut S. Multiresolution
wavelet transform based feature extraction and ECG
doi: 10.1049/iet-spr.2017.0296
classification to detect cardiac abnormalities. Measurement.
7. Varatharajan R, Manogaran G, Priyan MK. A big data 2017;108:55-66.
Volume 1 Issue 4 (2024) 59 doi: 10.36922/aih.3367

