Page 66 - AIH-1-4
P. 66

Artificial Intelligence in Health                                   A fuzzy system for heartbeat classification



               doi: 10.1016/j.measurement.2017.05.022             doi: 10.1007/s10462-020-09804-x
            18.  Satija U, Ramkumar B, Manikandan MS. A new automated   24.  Hanbay K. Deep neural network based approach for ECG
               signal quality-aware ECG beat classification method for   classification using hybrid differential features and active
               unsupervised ECG diagnosis environments. IEEE Sensors J.   learning. IET Signal Process. 2019;13(2):165-175.
               2019;19(1):277-286.
                                                                  doi: 10.1049/iet-spr.2018.5103
               doi: 10.1109/JSEN.2018.2877055
                                                               25.  Xu X, Jeong S, Li J. Interpretation of electrocardiogram
            19.  Jing J, Huaifeng Z, Dechang P, Chenglong D. A novel multi-  (ECG) rhythm by combined CNN and BiLSTM.  IEEE
               module neural network system for imbalanced heartbeats   Access. 2020;8:125380-125388.
               classification. Expert Syst Applic X. 2019;1:100003.
                                                                  doi: 10.1109/ACCESS.2020.3006707
               doi: 10.1016/j.eswax.2019.100003
                                                               26.  Zhai X, Tin C. Automated ECG classification using dual
            20.  Tandale S, Barhatte AS, Ghongade R, Dale M. Arrhythmia   heartbeat coupling based on convolutional neural network.
               Classification Using Neuro Fuzzy Approach. In:     IEEE Access. 2018;6:27465-27472.
               2017  3   International  Conference  on  Advances  in
                     rd
               Computing, Communication and Automation. 2017. p. 1-4.     doi: 10.1109/ACCESS.2018.2833841.
               doi: 10.1109/ICACCAF.2017.8344712               27.  Pan J, Tompkins JW. A real-time QRS detection algorithm.
                                                                  IEEE Trans Biomed Eng. 1985;32(3):230-236.
            21.  Rivera J, Rodriguez K, Yu XH. Cardiovascular Conditions
               Classification Using Adaptive Neuro-Fuzzy Inference      doi: 10.1109/TBME.1985.325532
               System. In: 2019 IEEE International Conference on Fuzzy   28.  Kuhn M, Johnson K, editors. Classification models. In:
               Systems. 2019. p. 1-6.                             Applied Predictive Modeling. New York: Springer; 2013.
               doi: 10.1109/FUZZ-IEEE.2019.8858896                doi: 10.1007/978-1-4614-6849-3
            22.  Sun Z, Wang C, Zhao Y, Yan C. Multi-label ECG signal   29.  Balbinot A, Favieiro G. A  Neuro-Fuzzy system
               classification based on ensemble classifier. IEEE Access.   for characterization of arm movements.  Sensors.
               2020;8:117986-117996.
                                                                  2013;13(2):2613-2630.
               doi: 10.1109/ACCESS.2020.3004908
                                                                  doi: 10.3390/s130202613
            23.  Kour H, Manhas J, Sharma V. Usage and implementation
               of  neurofuzzy  systems  for  classification  and  prediction  in   30.  Jang JS. Adaptive-network-based Fuzzy inference system.
               the diagnosis of different types of medical disorders. Artif   IEEE Trans Syst Man Cybernet. 1993;23(3):665-685.
               Intellig Rev. 2020;53:1-56.                        doi: 10.1109/21.256541Et omnim eveliquod que et, vollabo.




































            Volume 1 Issue 4 (2024)                         60                               doi: 10.36922/aih.3367
   61   62   63   64   65   66   67   68   69   70   71