Page 82 - AIH-2-3
P. 82

Artificial Intelligence in Health                                        CNN model for leukemia diagnosis



               learning using Gompertz function for leukemia classification.   Hyperparameter optimization of a convolutional neural
               Biomed Signal Process Control. 2025;100:106925.    network model for pipe burst location in water distribution
                                                                  networks. J Imaging. 2023;9:68.
               doi: 10.1016/j.bspc.2024.106925
                                                                  doi: 10.3390/jimaging9030068
            12.  Loey M, Naman M, Zayed H. Deep transfer learning in
               diagnosing leukemia in blood cells. Computers. 2020;9(2):29.  18.  Rodrigues V, Deusdado S. Metalearning approach
                                                                  for leukemia informative genes prioritization.  J  Integr
               doi: 10.3390/computers9020029
                                                                  Bioinformatics. 2020;17(1):20190069.
            13.  Damit DSA, Sulaiman SN, Osman MK, Karim NKA,      doi: 10.1515/jib-2019-0069
               Razali NF, Marzuki MIF. Navigating Tversky loss function
               hyperparameter spaces using particle swarm optimization   19.  Bai Y, Yang K, Yu W, Xu C, Zhao T, Ma WY. Automatic image
               for myocardial scar segmentation. In:  2024  20   IEEE   dataset construction from click-through logs using deep
                                                     th
               International Colloquium on Signal Processing and Its   neural network. In: Proceedings of ACM SIGIR Conference;
               Applications (CSPA); 2024. p. 173-177.             2015. p. 333-342.
               doi: 10.1109/CSPA60979.2024.10525595               doi: 10.1145/2733373.2806243
            14.  Kumar I, Rawat J. Segmentation and classification of white   20.  Islam MM, Rifat HR, Shahid MSB, Akhter A, Uddin MA.
               blood smear images using modified CNN architecture.   Utilizing deep feature fusion for automatic leukemia
               Discov Appl Sci. 2024;6:587.                       classification: An IoMT-enabled deep learning framework.
                                                                  Sensors. 2024;24(13):4420.
               doi: 10.1007/s42452-024-06139-y
                                                                  doi: 10.3390/s24134420
            15.  Muhsen IN, Shyr D, Sung AD, Hashmi SK. Machine learning
               applications in the diagnosis of benign and malignant   21.  Sampathila N, Chadaga K, Goswami N, et al. Customized
               hematological diseases. Clin Hematol Int. 2020;3(1):13-20.  deep learning classifier for detection of acute lymphoblastic
                                                                  leukemia using blood smear images.  Healthcare  (Basel).
               doi: 10.2991/chi.k.201130.001                      2022;10(10):1812.
            16.  Hehr M, Sadafi A, Matek C, et al. Explainable AI identifies      doi: 10.3390/healthcare10101812
               diagnostic cells of genetic AML subtypes.  PLOS Digital   22.  Gupta R, Gehlot S, Gupta A. (C-NMC): B-lineage acute
               Health. 2023;2(3):e0000187.
                                                                  lymphoblastic leukaemia: A blood cancer dataset. Med Eng
               doi: 10.1371/journal.pdig.0000187                  Phys. 2022;103:103793.
            17.  Antunes A, Ferreira B, Marques N, Carriço N.      doi: 10.1016/j.medengphy.2022.103793





































            Volume 2 Issue 3 (2025)                         76                               doi: 10.36922/aih.4710
   77   78   79   80   81   82   83   84   85   86   87