Page 67 - AJWEP-v22i3
P. 67
Phytochemical and functional traits of Suaeda monoica
photosynthetic machinery from salinity induced oxidative (Basel). 2020;9:e458.
damage and confer salt tolerance in an extreme halophyte doi: 10.3390/plants9040458
Salvadora persica L. Front Plant Sci. 2016;7:e50. 46. Tuteja N, Sopory SK. Chemical signaling under abiotic
doi: 10.3389/fpls.2016.00050 stress environment in plants. Plant Signal Behav.
35. Ben Hsouna A, Michalak M, Kukula-Koch W, et al. 2008;3:525-536.
Evaluation of halophyte biopotential as an unused natural doi: 10.4161/psb.3.8.6186
resource: The case of Lobularia maritima. Biomolecules. 47. Li Q, Song J. Analysis of widely targeted metabolites
2022;12:e1583. of the euhalophyte Suaeda salsa under saline
doi: 10.3390/biom12111583 conditions provides new insights into salt tolerance and
36. Chaudhry S, Sidhu GPS. Climate change regulated nutritional value in halophytic species. BMC Plant Biol.
abiotic stress mechanisms in plants: A comprehensive 2019;19:388.
review. Plant Cell Rep. 2022;41:1-31. doi: 10.1186/s12870-019-2006-5
doi: 10.1007/s00299-021-02759-5 48. Ashraf M, Foolad MR. Roles of glycine betaine and
37. Ghanem AMFM, Mohamed E, Kasem AMMA, proline in improving plant abiotic stress resistance.
El-Ghamery AA. Differential salt tolerance strategies Environ Exp Bot. 2007;59(2):206-216.
in three halophytes from the same ecological habitat: doi: 10.1016/j.envexpbot.2005.12.006
Augmentation of antioxidant enzymes and compounds. 49. Mitra R, Ghosh S, Mukherjee G, Acharya Chowdhury A.
Plants. 2021;10:e1100. Secondary metabolites: Treasure trove for future
doi: 10.3390/plants10061100 medicine. In: Mérillon JM, Ramawat KG, editors. Plant
38. Boughalleb F, Denden M. Physiological and biochemical Specialized Metabolism for Plant Protection: Genomics
changes of two halophytes, Nitraria retusa (Forssk.) and and Biotechnology. Cham: Springer Nature Switzerland;
Atriplex halimus (L.) under increasing salinity. Agric J. 2023. p. 1-45.
2011;6:327-339. 50. D’Auria JC, Gershenzon J. The secondary metabolism of
doi: 10.3923/aj.2011.327.339 Arabidopsis thaliana: Growing like a weed. Curr Opin
39. Haque MI, Siddiqui SA, Jha B, Rathore MS. Interactive Plant Biol. 2005;8:308-316.
effects of abiotic stress and elevated CO on physio- doi: 10.1016/j.pbi.2005.03.012
2
chemical and photosynthetic responses in Suaeda 51. Arbona V, Iglesias DJ, Talón M, Gómez-Cadenas A.
species. J Plant Growth Regul. 2022;41:2930-2948. Plant phenotype demarcation using nontargeted LC-MS
doi: 10.1007/s00344-021-10485-1 and GC-MS metabolite profiling. J Agric Food Chem.
40. Mishra A, Tanna B. Halophytes: Potential resources for 2009;57:7338-7347.
salt stress tolerance genes and promoters. Front Plant doi: 10.1021/jf9009137
Sci. 2017;8:e829. 52. Karowe DN, Grubb C. Elevated CO increases constitutive
2
doi: 10.3389/fpls.2017.00829 phenolics and trichomes, but decreases inducibility of
41. Parida AK, Jha B. Salt tolerance mechanisms in phenolics in Brassica rapa (Brassicaceae). J Chem Ecol.
mangroves: A review. Trees. 2010;24(2):199-217. 2011;37:1332-1340.
doi: 10.1007/s00468-010-0417-x doi: 10.1007/s10886-011-0044-z
42. Parida AK, Veerabathini SK, Kumari A, Agarwal PK. 53. Demkura PV, Ballaré CL. UVR8 mediates UV-B-
Physiological, anatomical and metabolic implications induced arabidopsis defense responses against Botrytis
of salt tolerance in the halophyte Salvadora persica cinerea by controlling sinapate accumulation. Mol Plant.
under hydroponic culture condition. Front Plant Sci. 2012;5:642-652.
2016;7:e351. doi: 10.1093/mp/sss025
doi: 10.3389/fpls.2016.00351 54. Kranner I, Minibayeva FV, Beckett RP, Seal CE. What
43. Rajput VD, Chen Y, Ayup M. Effects of high salinity on is stress? Concepts, definitions and applications in seed
physiological and anatomical indices in the early stages science. New Phytol. 2010;188:655-673.
of Populus euphratica growth. Russ J Plant Physiol. doi: 10.1111/j.1469-8137.2010.03461.x
2015;62:229-236. 55. Boestfleisch C, Wagenseil NB, Buhmann AK, et al.
doi: 10.1134/S1021443715020168 Manipulating the antioxidant capacity of halophytes to
44. Al-Shamsi N, Hussain MI, El-Keblawy A. Physiological increase their cultural and economic value through saline
responses of the xerohalophyte Suaeda vermiculata cultivation. AoB Plants. 2014;6:plu046.
to salinity in its hyper-arid environment. Flora. doi: 10.1093/aobpla/plu046
2020;273:e151705. 56. Rodrigues MJ, Soszynski A, Martins A, et al. Unravelling
doi: 10.1016/j.flora.2020.151705 the antioxidant potential and the phenolic composition
45. Wang R, Wang X, Liu K, Zhang XJ, Zhang LY, Fan SJ. of different anatomical organs of the marine halophyte
Comparative transcriptome analysis of halophyte Zoysia Limonium algarvense. Ind Crops Prod. 2015;77:315-322.
macrostachya in response to salinity stress. Plants doi: 10.1016/j.indcrop.2015.08.061
Volume 22 Issue 3 (2025) 61 doi: 10.36922/ajwep.8523