Page 15 - AN-1-3
P. 15
Advanced Neurology Long-term in vivo MRI tracking of SPIO-labeled NSCs
8. Chen J, Venkat P, Zacharek A, et al., 2014, Neurorestorative 10(16): 7369–7376.
therapy for stroke. Front Hum Neurosci, 8: 382.
https://doi.org/10.1039/c8nr00736e
https://doi.org/10.3389/fnhum.2014.00382
20. Hu Y, Li D, Wei H, et al., 2021, Neurite extension and
9. Hamblin MH, Lee JP, 2021, Neural stem cells for early orientation of spiral ganglion neurons can be directed by
ischemic stroke. Int J Mol Sci, 22(14): 7703. superparamagnetic iron oxide nanoparticles in a magnetic
field. Int J Nanomedicine, 16: 4515–4526.
https://doi.org/10.3390/ijms22147703
https://doi.org/10.2147/IJN.S313673
10. Ding DC, Lin CH, Shyu WC, et al., 2013, Neural stem cells
and stroke. Cell Transplant, 22(4): 619–630. 21. Wang Z, Xu P, Chen B, et al., 2018, Identifying circRNA-
associated-ceRNA networks in the hippocampus of Abeta1-
https://doi.org/10.3727/096368912X655091
42-induced Alzheimer’s disease-like rats using microarray
11. Bernstock JD, Peruzzotti-Jametti L, Ye D, et al., 2017, analysis. Aging (Albany NY), 10(4): 775–788.
Neural stem cell transplantation in ischemic stroke: A role
for preconditioning and cellular engineering. J Cereb Blood https://doi.org/10.18632/aging.101427
Flow Metab, 37(7): 2314–2319. 22. Wu F, Han B, Wu S, et al., 2019, Circular RNA TLK1
aggravates neuronal injury and neurological deficits after
https://doi.org/10.1177/0271678X17700432
ischemic stroke via miR-335-3p/TIPARP. J Neurosci,
12. Wang G, Han B, Shen L, et al., 2020, Silencing of circular RNA 39(37): 7369–7393.
HIPK2 in neural stem cells enhances functional recovery https://doi.org/10.1523/JNEUROSCI.0299-19.2019
following ischaemic stroke. EBioMedicine, 52: 102660.
23. Bai Y, Zhang Y, Han B, et al., 2018, Circular RNA DLGAP4
https://doi.org/10.1016/j.ebiom.2020.102660
ameliorates ischemic stroke outcomes by targeting miR-143
13. Tong L, Zhao M, Zhu S, et al., 2011, Synthesis and application to regulate endothelial-mesenchymal transition associated
of superparamagnetic iron oxide nanoparticles in targeted with blood-brain barrier integrity. J Neurosci, 38(1): 32–50.
therapy and imaging of cancer. Front Med, 5(4): 379–387.
https://doi.org/10.1523/JNEUROSCI.1348-17.2017
https://doi.org/10.1007/s11684-011-0162-6
24. Shi Y, Zhang L, Pu H, et al., 2016, Rapid endothelial
14. Kim SJ, Lewis B, Steiner MS, et al., 2016, Superparamagnetic cytoskeletal reorganization enables early blood-brain
iron oxide nanoparticles for direct labeling of stem cells and in barrier disruption and long-term ischaemic reperfusion
vivo MRI tracking. Contrast Media Mol Imaging, 11(1): 55–64. brain injury. Nat Commun, 7: 10523.
https://doi.org/10.1002/cmmi.1658 https://doi.org/10.1038/ncomms10523
15. Boese AC, Le QS, Pham D, et al., 2018, Neural stem cell 25. Zhao J, Zhang Z, Xue Y, et al., 2018, Anti-tumor
therapy for subacute and chronic ischemic stroke. Stem Cell macrophages activated by ferumoxytol combined or surface-
Res Ther, 9(1): 154. functionalized with the TLR3 agonist poly (I: C) promote
https://doi.org/10.1186/s13287-018-0913-2 melanoma regression. Theranostics, 8(22): 6307–6321.
https://doi.org/10.7150/thno.29746
16. Wang P, Ma S, Ning G, et al., 2020, Entry-prohibited effect of
kHz pulsed magnetic field upon interaction between SPIO 26. Zakrzewski W, Dobrzynski M, Szymonowicz M, et al., 2019,
nanoparticles and mesenchymal stem cells. IEEE Trans Stem cells: Past, present, and future. Stem Cell Res Ther,
Biomed Eng, 67(4): 1152–1158. 10(1): 68.
https://doi.org/10.1109/TBME.2019.2931774 https://doi.org/10.1186/s13287-019-1165-5
17. Keselman P, Yu EY, Zhou XY, et al., 2017, Tracking short- 27. Kim HY, Kim TJ, Kang L, et al., 2020, Mesenchymal
term biodistribution and long-term clearance of SPIO stem cell-derived magnetic extracellular nanovesicles for
tracers in magnetic particle imaging. Phys Med Biol, targeting and treatment of ischemic stroke. Biomaterials,
62(9): 3440–3453. 243: 119942.
https://doi.org/10.1088/1361-6560/aa5f48 https://doi.org/10.1016/j.biomaterials.2020.119942
18. Bashir MR, Bhatti L, Marin D, et al., 2015, Emerging 28. Sonntag KC, Song B, Lee N, et al., 2018, Pluripotent stem
applications for ferumoxytol as a contrast agent in MRI. cell-based therapy for Parkinson’s disease: Current status
J Magn Reson Imaging, 41(4): 884–898. and future prospects. Prog Neurobiol, 168: 1–20.
https://doi.org/10.1002/jmri.24691 https://doi.org/10.1016/j.pneurobio.2018.04.005
19. Chen B, Sun J, Fan F, et al., 2018, Ferumoxytol of 29. Okano H, Yasuda D, Fujimori K, et al., 2020, Ropinirole,
ultrahigh magnetization produced by hydrocooling and a new ALS drug candidate developed using iPSCs. Trends
magnetically internal heating co-precipitation. Nanoscale, Pharmacol Sci, 41(2): 99–109.
Volume 1 Issue 3 (2022) 9 https://doi.org/10.36922/an.v1i3.278

