Page 91 - ESAM-1-2
P. 91

Engineering Science in
            Additive Manufacturing                                            Porous structure performance improvement



            or indirectly. Separately, other authors declared that they   within SLM to improve sustainability. Impact J Innov Impact.
            have no known competing financial interests or personal   2016;8(2):377.
            relationships that could have influenced the work reported   8.   Kas M, Yilmaz O. Radially graded porous structure design
            in this paper.                                        for laser powder bed fusion additive manufacturing of
                                                                  Ti-6Al-4V alloy. J Mater Process Technol. 2021;296:117186.
            Author contributions
                                                                  doi: 10.1016/j.jmatprotec.2021.117186
            Conceptualization: Yu-Yao Chan, Che-Nan Kuo        9.   Zhang W, Xu J. Advanced lightweight  materials for
            Formal analysis: Yu-Yao Chan, Yi Chao                 automobiles: A review. Mater Design. 2022;221:110994.
            Investigation: Yu-Yao Chan, Yi Chao
            Methodology: Yu-Yao Chan, Che-Nan Kuo                 doi: 10.1016/j.matdes.2022.110994
            Writing – original draft: Yu-Yao Chan              10.  Lv X, Xiao Z, Fang J, Li Q, Lei F, Sun G. On safety design
            Writing – review & editing: Che-Nan Kuo               of vehicle for protection of vulnerable road users: A review.
            Ethics approval and consent to participate            Thin-Walled Struct. 2023;182:109990.
                                                                  doi: 10.1016/j.tws.2022.109990
            Not applicable.
                                                               11.  Huang R, Riddle M, Graziano D,  et al. Energy and
            Consent for publication                               emissions saving potential of additive manufacturing:
                                                                  The case of lightweight aircraft components. J Clean Prod.
            Not applicable.                                       2016;135:1559-1570.
            Availability of data                                  doi: 10.1016/j.jclepro.2015.04.109
                                                               12.  Uhlmann E,  Kersting R, Klein  TB, Cruz MF, Borille  AV.
            The authors confirm that the data supporting the findings   Additive manufacturing of titanium alloy for aircraft
            of this study are available within the article.       components. Procedia Cirp. 2015;35:55-60.
            References                                            doi: 10.1016/j.procir.2015.08.061

            1.   Simonelli M, Tse YY, Tuck C. The formation of  α+  β   13.  Zochowski P, Bajkowski M, Grygoruk R,  et al. Ballistic
               microstructure in  as-fabricated selective laser  melting of   impact resistance of bulletproof vest inserts containing
               Ti-6Al-4V. J Mater Res. 2014;29(17):2028-2035.     printed titanium structures. Metals. 2021;11(2):225.
               doi: 10.1557/jmr.2014.166                          doi: 10.3390/met11020225
            2.   Cui C, Hu B, Zhao L, Liu S. Titanium alloy production   14.  Brennan-Craddock J, Brackett D, Wildman R, Hague R.
               technology, market prospects and industry development.   The design of impact absorbing structures for additive
               Mater Design. 2011;32(3):1684-1691.                manufacture. J Phys Conf Ser. 2012;382:012042.

               doi: 10.1016/j.matdes.2010.09.011                  doi: 10.1088/1742-6596/382/1/012042
            3.   Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy:   15.  Pan C, Han Y, Lu J. Design and optimization of lattice
               A review. Mater Design. 2018;164:107552.           structures: A review. Appl Sci. 2020;10(18):63-74.
               doi: 10.1016/j.matdes.2018.107552                  doi: 10.3390/app10186374
            4.   Donachie MJ.  Titanium: A  Technical Guide. 2   ed.   16.  Park KM, Min KS, Roh YS. Design optimization of lattice
                                                      nd
               Netherlands: ASM International; 2000.              structures under compression: Study of unit cell types and
                                                                  Cell arrangements. Materials. 2022;15:97.
               doi: 10.31399/asm.tb.ttg2.9781627082693
                                                                  doi: 10.3390/ma15010097
            5.   Li Y, Feng Z, Hao L, et al. A review on functionally graded
               materials and structures via additive manufacturing: From   17.  Thompson SM, Bian L, Shamsaei N, Yadollahi A. An overview
               multi‐scale design to versatile functional properties.  Adv   of direct laser deposition for additive manufacturing; part I:
               Mater Technol. 2020;5(6):1900981.                  Transport phenomena, modeling and diagnostics.  Addit
                                                                  Manuf. 2015;8:36-62.
               doi: 10.1002/admt.201900981
                                                                  doi: 10.1016/j.addma.2015.07.001
            6.   Allen J. An investigation into the comparative costs of
               additive manufacture vs. Machine from solid for aero   18.  Yap CY, Chua CK, Dong ZL,  et al. Review of selective
               engine parts.  Cost Eff Manuf via Net-Shape Process.   laser melting: Materials and applications.  Appl Phys Rev.
               2006;17:1-17.                                      2015;2(4):041101.
                                                                  doi: 10.1063/1.4935926
            7.   O’Leary R, Setchi R, Prickett P, Hankins G, Jones N. An
               investigation into the recycling of Ti-6Al-4V powder used   19.  Khorasani  A,  Gibson  I,  Awan  US,  Ghaderi  A.  The  effect


            Volume 1 Issue 2 (2025)                         13                         doi: 10.36922/ESAM025170009
   86   87   88   89   90   91   92   93   94   95   96