Page 92 - ESAM-1-2
P. 92

Engineering Science in
            Additive Manufacturing                                            Porous structure performance improvement



               of  SLM  process  parameters  on  density,  hardness,  tensile      doi: 10.1016/j.mechmat.2022.104241
               strength and surface quality of Ti-6Al-4V.  Addit Manuf.   29.  Zhao X, Li Z, Zou Y, Zhao X. Compressive characteristics
               2019;25:176-186.
                                                                  and energy absorption capacity of automobile energy-
               doi: 10.1016/j.addma.2018.09.002                   absorbing box with filled porous TPMS structures. Appl Sci.
                                                                  2024;14(9):3790.
            20.  Shifeng W, Shuai L, Qingsong W, Yan C, Sheng Z, Yusheng S.
               Effect of molten pool boundaries on the mechanical      doi: 10.3390/app14093790
               properties of selective laser melting parts. J Mater Process   30.  Li Z, Zhao R, Chen X, Jiao Y, Chen Z. Design
               Technol. 2014;214(11):2660-2667.                   approach for tuning the hybrid region of 3D-printed
               doi: 10.1016/j.jmatprotec.2014.06.002              heterogeneous structures: Modulating mechanics and
                                                                  energy absorption capacity. ACS Appl Mater Interfaces.
            21.  Ansari MJ, Nguyen DS, Park HS. Investigation of SLM   2023;15(6):7686-7699.
               process in terms of temperature distribution and melting
               pool size: Modeling and experimental approaches. Materials.      doi: 10.1021/acsami.2c17753
               2019;12(8):1272.                                31.  Dong JH, Wang YJ, Jin FN, Fan HL. Crushing behaviors

               doi: 10.3390/ma12081272                            of buckling-induced metallic meta-lattice structures.  Def
                                                                  Technol. 2022;18(8):1301-1310.
            22.  Seetoh IP, Liu X, Markandan K, Zhen L, Lai CQ. Strength
               and energy absorption characteristics of Ti6Al4V      doi: 10.1016/j.dt.2021.07.014
               auxetic 3D anti-tetrachiral metamaterials.  Mech Mater.   32.  Obadimu SO, Kourousis KI. Compressive behaviour
               2021;156:103811.                                   of additively manufactured lattice structures:  A  review.
               doi: 10.1016/j.mechmat.2021.103811                 Aerospace. 2021;8(8):207.
            23.  Choy SY, Sun CN, Sin WJ, et al. Superior energy absorption of      doi: 10.3390/aerospace8080207
               continuously graded microlattices by electron beam additive   33.  Li Y, Wang XS, Meng XK. Buckling behavior of metal film/
               manufacturing. Virtual Phys Prototyp. 2021;16(1):1-15.  substrate structure under pure bending.  Appl Phys Lett.
               doi: 10.1080/17452759.2020.1868656                 2008;92(13):131902.
            24.  Mahamood  RM,  Akinlabi  ET,  Owolabi  MG,       doi: 10.1063/1.2897035
               Abdulrahman KO. Advanced manufacture of compositionally   34.  Zhao S, Li SJ, Hou WT, Hao YL, Yang R, Misr RDK. The
               graded composite materials: An overview. In: Hierarchical   influence of cell morphology on the compressive fatigue
               Composite Materials: Materials, Manufacturing, Engineering.   behavior of Ti-6Al-4V meshes fabricated by electron beam
               Berlin, Boston: De Gruyter; 2019. p. 41-54.        melting. J Mech Behav Biomed Mater. 2016;59:251-264.
               doi: 10.1515/9783110545104-003                     doi: 10.1016/j.jmbbm.2016.01.034
            25.  Evans AG, He MY, Deshpande VS, Hutchinson JW,   35.  Li D, Liao W, Dai N, Xie YM. Comparison of mechanical
               Jacobsen  AJ, Carter WB. Concepts for enhanced energy   properties and energy absorption of sheet-based and strut-
               absorption using hollow micro-lattices.  Int J Impact Eng.   based gyroid cellular structures with graded densities.
               2010;37:947-959.                                   Materials. 2019;12(13):2183.
               doi: 10.1016/j.ijimpeng.2010.03.007                doi: 10.3390/ma12132183
            26.  Liu F, Zhang DZ, Zhang P, Zhao M, Jafar S. Mechanical   36.  Yang E, Leary M, Lozanovski B, et al. Effect of geometry on
               properties of optimized diamond lattice structure for bone   the mechanical properties of Ti-6Al-4V Gyroid structures
               scaffolds fabricated via selective laser melting.  Materials.   fabricated via SLM: A  numerical study.  Mater Design.
               2018;11:374.                                       2019;184:108165.
               doi: 10.3390/ma11030374                            doi: 10.1016/j.matdes.2019.108165
            27.  Zhao M, Zhang DZ, Liu F, Li Z, Ma Z, Ren Z. Mechanical   37.  Choy SY, Sun CN, Leong KF, Wei J. Compressive properties
               and  energy  absorption  characteristics  of  additively   of Ti-6Al-4V lattice structures fabricated by selective laser
               manufactured functionally graded sheet lattice structures   melting: Design, orientation and density.  Addit Manuf.
               with minimal surfaces. Int J Mech Sci. 2020;167:105262.  2017;16:213-224.
               doi: 10.1016/j.ijmecsci.2019.105262                doi: 10.1016/j.addma.2017.06.012
            28.  Sun  Q,  Sun  J,  Guo  K,  Wang  L.  Compressive  mechanical   38.  Jenkins  SNM.  Mechanical Properties and Structural
               properties and energy absorption characteristics of SLM   Evaluation of Diamond Structure Ti6Al4V Lattices
               fabricated Ti6Al4V triply periodic minimal surface cellular   Made by Electron Beam Melting. England: University of
               structures. Mech Mater. 2022;166:104241.           Sheffield; 2017.



            Volume 1 Issue 2 (2025)                         14                         doi: 10.36922/ESAM025170009
   87   88   89   90   91   92   93   94   95   96   97