Page 61 - ESAM-1-4
P. 61
Engineering Science in
Additive Manufacturing Reusability of Ti6Al4V powder in LPBF
Samples Mechanical Properties. In: Euro PM2020 - European Cu-Cr-Nb powder and bulks produced by laser powder bed
Powder Metallurgy Conference; 2020. Available from: https:// fusion. Powder Technol. 2025;457:120930.
www.cm/cea.hal.science/cea-04789655v1 [Last accessed on doi: 10.1016/j.powtec.2025.120930
2025 Oct 31].
36. Jandaghi MR, Moverare J. Exploring the efficiency of
29. Cordova L, Sithole C, Macía Rodríguez E, Gibson I, powder reusing as a sustainable approach for powder bed
Campos M. Impact of powder reusability on batch additive manufacturing of 316L stainless steel. Mater Des.
repeatability of Ti6Al4V ELI for PBF-LB industrial 2024;244:113222.
production. Powder Metall. 2023;66(2):129-138.
doi: 10.1016/j.matdes.2024.113222
doi: 10.1080/00325899.2022.2133357
37. Moghimian P, Poirié T, Habibnejad-Korayem M, et al. Metal
30. Smolina I, Gruber K, Pawlak A, et al. Influence of the powders in additive manufacturing: A review on reusability
AlSi7Mg0.6 aluminium alloy powder reuse on the quality and recyclability of common titanium, nickel and aluminum
and mechanical properties of LPBF samples. Materials. alloys. Addit Manuf. 2021;43:102017.
2022;15(14):5019.
doi: 10.1016/j.addma.2021.102017
doi: 10.3390/ma15145019
38. Ghods S, Schultz E, Wisdom C, et al. Electron beam
31. Gruber K, Smolina I, Kasprowicz M, Kurzynowski T.
Evaluation of inconel 718 metallic powder to optimize additive manufacturing of Ti6Al4V: Evolution of powder
the reuse of powder and to improve the performance and morphology and part microstructure with powder reuse.
sustainability of the laser powder bed fusion (Lpbf) process. Materialia (Oxf). 2020;9:100631.
Materials (Basel). 2021;14(6):1538. doi: 10.1016/j.mtla.2020.100631
doi: 10.3390/ma14061538 39. Alamos FJ, Schiltz J, Attardo R, et al. Effect of powder reuse
on orthopedic metals produced through selective laser
32. Cordova L, Bor T, De Smit M, Carmignato S, Campos M,
Tinga T. Effects of powder reuse on the microstructure sintering. Manuf Lett. 2022;31:40-44.
and mechanical behaviour of Al-Mg-Sc-Zr alloy processed doi: 10.1016/j.mfglet.2021.06.002
by laser powder bed fusion (LPBF). Addit Manuf. 40. Bandyopadhyay A, Traxel KD, Lang M, Juhasz M, Eliaz N,
2020;36:101625.
Bose S. Alloy design via additive manufacturing: Advantages,
doi: 10.1016/j.addma.2020.101625 challenges, applications and perspectives. Mater Today.
2022;52:207-224.
33. Huang T, Sitt Thu K, Zhang Z, et al. Assessing the
impact of top-up powder reuse strategy on MS1 powder doi: 10.1016/j.mattod.2021.11.026
characteristics and L-PBF printed part properties. Metals 41. Traxel KD, Groden C, Valladares J, Bandyopadhyay A.
(Basel). 2025;15(2):181.
Mechanical properties of additively manufactured variable
doi: 10.3390/met15020181 lattice structures of Ti6Al4V. Mater Sci Eng. 2021;809:140925.
34. Weiss C, Haefner CL, Munk J. On the influence of doi: 10.1016/j.msea.2021.140925
AlSi10Mg powder recycling behavior in the LPBF process 42. Meier B, Warchomicka F, Ehgartner D, et al. Toward a
and consequences for mechanical properties. JOM. sustainable laser powder bed fusion of Ti 6Al 4 V: Powder
2022;74(3):1188-1199.
reuse and its effects on material properties during a single
doi: 10.1007/s11837-021-05080-4 batch regime. Sustain Mater Technol. 2023;36:e00626.
35. Dai Z, Chen X, Liu Y, Wang J, Lu J, Liu J. Effect of reuse on doi: 10.1016/j.susmat.2023.e00626
Volume 1 Issue 4 (2025) 8 doi: 10.36922/ESAM025420028

