Page 52 - GPD-2-3
P. 52

Gene & Protein in Disease                                               Effect of phytochemicals in diabetes



               diabetes mellitus. Biomolecules, 10: 305.          AutoDock Vina 1.2.0: New docking methods, expanded
                                                                  force field, and python bindings.  J  Chem Inf Model,
               https://doi.org/10.3390/biom10020305
                                                                  61: 3891–3898.
            33.  Bharadwaj S, Dubey A, Yadava U, et al., 2021, Exploration
               of  natural  compounds  with anti-SARS-CoV-2  activity via      https://doi.org/10.1021/acs.jcim.1c00203
               inhibition of SARS-CoV-2 Mpro.  Brief Bioinform, 22(2):   44.  Tiong  SH, Looi  CY, Hazni  H,  et al., 2013,  Antidiabetic
               1361–1377.                                         and antioxidant properties of alkaloids from Catharanthus
               https://doi.org/10.1093/bib/bbaa382                roseus (L.) G. Don. Molecules, 18: 9770–9784.
            34.  Yousif E, Sherif R, Abeer AE, et al., 2021, Vinca (Catharanthus      https://doi.org/10.3390/molecules18089770
               roseus) extracts attenuate alloxan-induced hyperglycemia   45.  O’Boyle NM, Banck M, James CA, et al., 2011, Open babel:
               and oxidative stress in journal rats. Am Food Sci Technol,   An open chemical toolbox. J Cheminform, 3: 33.
               9(4): 161–172.
                                                                  https://doi.org/10.1186/1758-2946-3-33
               https://doi.org/10.12691/ajfst-9-4-8
                                                               46.  Sander T, 2001, OSIRIS Property Explorer. Switzerland: Organic
            35.  Schwede T, Kopp J, Guex N, et al., 2003, SWISS-MODEL:   Chemistry  Portal. Available from: https://www.organic-
               An automated protein homology-modeling server. Nucleic   chemistry.org/prog/peo [Last accessed on 2022 Dec 25].
               Acids Res, 31(13): 3381–3385.
                                                               47.  Bickerton GR, Paolini GV, Besnard J, et al., 2012, Quantifying
               https://doi.org/10.1093/nar/gkg520                 the chemical beauty of drugs. Nat Chem, 4: 90–98.
            36.  Gasteiger E, Hoogland C, Gattiker A, et al., 2005, Protein      https://doi.org/10.1038/nchem.1243
               identification and analysis tools on the expasy server. In:
               Walker  JM,  editor.  The  Proteomics  Protocols  Handbook.   48.  Hanwell MD, Curtis DE, Lonie DC, et al., 2012, Avogadro:
               United States: Humana Press. p571-607.             An advanced semantic chemical editor, visualization, and
                                                                  analysis platform. J Cheminform, 4: 17.
               https://doi.org/10.1385/1-59259-890-0:571
                                                                  https://doi.org/10.1186/1758-2946-4-17
            37.  Geourjon C, Deléage G, 1995, SOPMA: Significant
               improvements in protein secondary structure prediction   49.  BIOVIA, Dassault Systems, 2021, BIOVIA Discovery Studio
               by consensus prediction from multiple alignments. Comput   Visualizer 4.5, 21.1. San Diego: Dassault System. Available
               Appl Biosci, 11(6): 681–684.                       from: https://biovia-discovery-studio-2021-client.software.
                                                                  informer.com [Last accessed on 2023 Jan 02].
               https://doi.org/10.1093/bioinformatics/11.6.681
                                                               50.  Kim S, Chen J, Cheng T, et al., 2021, PubChem in 2021: New
            38.  Hirokawa  T,  Boon-Chieng  S,  Mitaku  S,  1998,  SOSUI:   data content and improved web interfaces. Nucleic Acids Res,
               Classification and secondary structure prediction system for   49(D1): D1388–D1395.
               membrane proteins. Bioinformatics, 14(4): 378–379.
                                                                  https://doi.org/10.1093/nar/gkaa971
               https://doi.org/10.1093/bioinformatics/14.4.378
                                                               51.  Sharma B, Mittal A, Dabur R, 2018, Mechanistic approach
            39.  Hollingsworth SA, Karplus PA, 2010, A fresh look at   of anti-diabetic compounds identified from natural sources.
               the Ramachandran plot and the occurrence of standard   Chem Biol Lett, 5(2): 63–99.
               structures in proteins. Biomol Concepts, 1(3–4): 271–283.
                                                               52.  Stapleton D, Mitchelhill KI, Gao G, et al., 1996, Mammalian
               https://doi.org/10.1515/BMC.2010.022               AMP-activated protein kinase subfamily.  J  Biol Chem,
            40.  Binkowski TA, Naghibzadeh S, Liang J, 2003, CASTp:   271(2): 611–614.
               Computed atlas of surface topography of proteins. Nucleic      https://doi.org/10.1074/jbc.271.2.611
               Acids Res, 31(13): 3352–3335.
                                                               53.  Kim J, Yang G, Kim Y,  et al., 2016, AMPK activators:
               https://doi.org/10.1093/nar/gkg512                 Mechanisms of action and physiological activities. Exp Mol
            41.  Guex N, Peitsch MC, 1997, SWISS-MODEL and the Swiss-  Med, 48: e224.
               PdbViewer: An environment for comparative protein      https://doi.org/10.1038/emm.2016.16
               modeling. Electrophoresis, 18: 2714–2723.
                                                               54.  Tarasiuk O, Miceli M, Di Domizio A, et al., 2022, AMPK
               https://doi.org/10.1002/elps.1150181505
                                                                  and diseases: State of the art regulation by AMPK-targeting
            42.  Pettersen EF, Goddard TD, Huang CC, et al., 2004, UCSF   molecules. Biology (Basel), 11: 1041.
               Chimera--a visualization system for exploratory research      https://doi.org/10.3390/biology11071041
               and analysis. J Comput Chem, 25(13): 1605–1612.
                                                               55.  Coughlan KA, Valentine RJ, Ruderman NB,  et al., 2014,
               https://doi.org/10.1002/jcc.20084
                                                                  AMPK activation: A therapeutic target for Type 2 diabetes?
            43.  Eberhardt J, Santos-Martins D, Tillack AF,  et al., 2021,   Diabetes Metab Syndr Obes, 7: 241–253.


            Volume 2 Issue 3 (2023)                         14                       https://doi.org/10.36922/gpd.0927
   47   48   49   50   51   52   53   54   55   56   57