Page 51 - GPD-2-3
P. 51

Gene & Protein in Disease                                               Effect of phytochemicals in diabetes



            9.   Alam S, Sarker MM, Sultana TN, et al., 2022, Antidiabetic   glucoregulatory  mechanisms  of metformin in  Type  2
               phytochemicals from medicinal plants: Prospective   diabetes mellitus. Nat Rev Endocrinol, 15(10): 569–589.
               candidates for new drug discovery and development. Front      https://doi.org/10.1038/s41574-019-0242-2
               Endocrinol (Lausanne), 13: 800714.
                                                               21.  Ohadoma SC, Akpan JL, Odey PA, et al., 2021, Mechanistic
               https://doi.org/10.3389/fendo.2022.800714          considerations of Catharanthus roseus on the hypoglycemic
            10.  Woods A, Salt I, Scott J, et al., 1996, The alpha1 and alpha2   activity of alpha glucosidase inhibitors and biguanides:
               isoforms of the AMP-activated protein kinase have similar   A review. J Pharm Adv Res, 4(10): 1390–1398.
               activities in rat liver but exhibit differences in substrate   22.  Francini F, Schinella GR, Ríos JL, 2019, Activation of AMPK
               specificity in vitro. FEBS Lett, 397: 347–351.     by medicinal plants and natural products: Its role in Type 2
               https://doi.org/10.1016/s0014-5793(96)01209-4      diabetes mellitus. Mini Rev Med Chem, 19(11): 880–901.
            11.  Wang YG, Han XG, Yang Y, et al., 2016, Functional differences      https://doi.org/10.2174/1389557519666181128120726
               between AMPK  α1 and  α2 subunits in osteogenesis,   23.  Srivastava V, Yadav A, Sarkar P, 2022, Molecular docking
               osteoblast-associated induction of osteoclastogenesis, and   and ADMET study of bioactive compounds of Glycyrrhiza
               adipogenesis. Sci Rep, 6: 32771.                   glabra against main protease of SARS-CoV2. Mater Today
               https://doi.org/10.1038/srep32771                  Proc, 49: 2999–3007.
            12.  PRKAA1 Protein Kinase AMPK-activated Catalytic      https://doi.org/10.1016/j.matpr.2020.10.055
               Subunit  Alpha 1  [Homo sapiens  (Human)].  Available from:   24.  Adhikari B, 2021, Roles of alkaloids from medicinal plants in
               https://www.ncbi.nlm.nih.gov [Last accessed on 2023 Apr 15].  the management of diabetes mellitus. J Chem, 10: 2691525.
            13.  Da Silva Xavier G, Leclerc I, Varadi A, et al., 2003, Role for      https://doi.org/10.1155/2021/2691525
               AMP-activated protein kinase in glucose-stimulated insulin
               secretion and preproinsulin gene expression.  Biochem  J,   25.  Bennouna J, Delord JP, Campone M, et al., 2008, Vinflunine:
               371(3): 761–774.                                   A  new microtubule inhibitor agent.  Clin  Cancer  Res,
                                                                  14: 1625–1632.
               https://doi.org/10.1042/bj20021812
                                                                  https://doi.org/10.1158/1078-0432.CCR-07-2219
            14.  Trillo-Tinoco J, Sierra RA, Mohamed E,  et al., 2019,
               AMPK  alpha-1 intrinsically regulates  the function and   26.  Newman  DJ,  Cragg  GM,  2007,  Natural  products  as
               differentiation of tumor myeloid-derived suppressor cells.   sources  of  new  drugs  over the  last  25  years.  J  Nat Prod,
               Cancer Res, 79(19): 5034–5047.                     70(3): 461–477.
                                                                  https://doi.org/10.1021/np068054v
               https://doi.org/10.1158/0008-5472.CAN-19-0880
                                                               27.  Balaji H, 2014, Versatile therapeutic effects of Vinca rosea
            15.  Mounier R, Lantier L, Viollet B,  et  al., 2009, Important
               role  for  AMPKalpha1  in  limiting  skeletal  muscle  cell   linn. Int J Pharm Sci Health Care, 1(4): 56–76.
               hypertrophy. FASEB J, 23(7): 2264–2273.         28.  Mohan SC, Anand T, Priyadharshini GS,  et al., 2015,
                                                                  GC-MS analysis of phytochemicals and hypoglycemic effect
               https://doi.org/10.1096/fj.08-119057
                                                                  of Catharanthus roseus in alloxan-induced diabetic rats. Int J
            16.  Phair IR, Nisr RB, Viollet B, et al., 2023, AMPK integrates   Pharm Sci Rev Res, 31(1): 123–128.
               metabolite and kinase-based immunometabolic control in   29.  Tolambiya P, Mathur S, 2016, A study on potential
               macrophages. Mol Metab, 68: 101661.
                                                                  phytopharmaceuticals assets in  Catharanthus roseus  L.
               https://doi.org/10.1016/j.molmet.2022.101661       (Alba). Int J Life Sci Biotechnol Pharm Res, 5: 1–6.
            17.  UniProt Consortium, 2021, UniProt: The universal protein      https://doi.org/10.18178/ijlbpr.5.1.1-6
               knowledgebase in 2021. Nucl Acids Res, 49: D480–D489.
                                                               30.  Nisar A, Mamat AS, Hatim MI, et al., 2016, An updated
               https://doi.org/10.1093/nar/gkaa1100               review on  Catharanthus roseus:  Phytochemical and
                                                                  pharmacological analysis.  Indian Res J Pharm Sci,
            18.  PRKAA2  Protein  Kinase  AMP-activated  Catalytic
               Subunit  Alpha2 [Homo sapiens (Human)]. Available from:   9: 631–653.
               https://www.ncbi.nlm.nih.gov [Last accessed on 2023 Apr 15].  31.  John J, 2017, Evaluation of hypoglycemic effect of Aloe vera
                                                                  on allaxon induced diabetic rats.  Int J Inf Res Rev, 4(3):
            19.  Foretz  M,  Guigas  B, Bertrand  L,  et al.,  2014,  Metformin:   3865–3868.
               From  mechanisms  of  action  to therapies.  Cell Metab,
               20(2): 953–966.                                 32.  Kalhotra P, Chittepu CS, Osorio-Revilla G,  et al., 2020,
                                                                  Phytochemicals in garlic extract inhibit therapeutic enzyme
               https://doi.org/10.1016/j.cmet.2014.09.018
                                                                  DPP-4 and induce skeletal muscle cell proliferation:
            20.  Foretz M, Guigas B, Viollet B, 2019, Understanding the   A possible mechanism of action to benefit the treatment of



            Volume 2 Issue 3 (2023)                         13                       https://doi.org/10.36922/gpd.0927
   46   47   48   49   50   51   52   53   54   55   56