Page 81 - GPD-2-4
P. 81

Gene & Protein in Disease                                        Carpenter bee a substrate for green synthesis



               https://doi.org/10.1002/jcla.24655                 Eng, 8(2): 377–97.
            6.   Daria S, Islam MR, 2022, Indiscriminate use of antibiotics   18.  Singh J, Dutta T, Kim KH, et al., 2018, Green’synthesis of
               for COVID-19 treatment in South Asian countries is a   metals and their oxide nanoparticles: Applications for
               threat for future pandemics due to antibiotic resistance. Clin   environmental remediation. J Nanobiotechnology, 16(1): 84.
               Pathol, 15.                                        https://doi.org/10.1186/s12951-018-0408-4
               https://doi.org/10.1177/2632010X221099889       19.  Alsammarraie FK, Wang W, Zhou P,  et al., 2018, Green
            7.   Band VI, Weiss DS, 2019, Heteroresistance: A  cause of   synthesis of silver nanoparticles using turmeric extracts and
               unexplained antibiotic treatment failure?  PLoS Pathogens,   investigation of their antibacterial activities. Colloids Surf B
               15(6): e1007726.                                   Biointerfaces, 171: 398–405.
               https://doi.org/10.1371/journal.ppat.1007726       https://doi.org/10.1016/j.colsurfb.2018.07.059
            8.   Flynn CE, Guarner J, 2023, Emerging antimicrobial   20.  Devi HS, Boda MA, Shah MA, et al., 2019, Green synthesis
               resistance. Mod Pathol, 36: 100249.                of iron oxide nanoparticles using  Platanus orientalis leaf
                                                                  extract for antifungal activity.  Green Process Synth, 8(1):
               https://doi.org/10.1016/j.modpat.2023.100249       38–45.
            9.   Stewart H, 2023, Alexander Fleming, antibiotic resistance,      https://doi.org/10.1515/gps-2017-0145
               and relevant lessons for the mitigation of risk from advanced
               artificial intelligence.                        21.  Lahiri D, Nag M, Sheikh HI, et al., 2021, Microbiologically
                                                                  synthesized nanoparticles and their role in silencing the
            10.  Baptista PV, McCusker MP, Carvalho A, et al., 2018, Nano-  biofilm signaling cascade. Front Microbiol, 12: 636588.
               strategies to fight multidrug resistant bacteria-‘A battle of
               the titans’. Front Microbiol, 9: 1441.             https://doi.org/10.3389/fmicb.2021.636588
                                                               22.  Elsakhawy T, Omara AE, Abowaly M,  et al., 2022, Green
               https://doi.org/10.3389/fmicb.2018.01441.
                                                                  synthesis of nanoparticles by mushrooms: A crucial dimension
            11.  Kumar R, Aadil KR, Ranjan S,  et  al., 2020,  Advances   for sustainable soil management. Sustainability, 14(7): 4328.
               in nanotechnology and  nanomaterials-based strategies
               for neural  tissue engineering.  J  Drug Deliv Sci Technol,      https://doi.org/10.3390/su14074328
               57: 101617.                                     23.  Selvakesavan RK, Franklin G, 2021, Prospective application
                                                                  of nanoparticles green synthesized using medicinal plant
               https://doi.org/10.1016/j.jddst.2020.101617
                                                                  extracts as novel nanomedicines.  Nanotechnol Sci Appl,
            12.  Munir MU, Ahmed A, Usman M,  et al., 2020, Recent   14: 179–195.
               advances in nanotechnology-aided materials in combating
               microbial resistance and functioning as antibiotics      https://doi.org/10.2147/NSA.S333467
               substitutes. Int J Nanomedicine, 15: 7329–7358.  24.  Ajaykumar AP, Sabira O, Sebastian M, et al., 2023, A novel
                                                                  approach for the biosynthesis of silver nanoparticles using
               https://doi.org/10.2147/IJN.S265934
                                                                  the defensive gland extracts of the beetle,  Luprops tristis
            13.  Pasika SR, Bulusu R, Rao BV,  et al., 2023, Nanotechnology   Fabricius. Sci Rep, 13(1): 10186.
               for biomedical applications. In: Nanomaterials: Advances and   25.  Stavenga DG, 2023, Pigmentary colouration of hairy carpenter
               Applications. Singapore: Springer Nature Singapore. p297–327.
                                                                  bees, genus Xylocopa. Naturwissenschaften, 110(3): 22.
            14.  Wang L, Hu C, Shao L, 2017, The antimicrobial activity of      https://doi.org/10.1007/s00114-023-01854-9
               nanoparticles: Present situation and prospects for the future.
               Int J Nanomed, 12: 1227–1249.                   26.  Ivanova EP, Hasan J, Webb HK,  et al., 2012, Natural
                                                                  bactericidal surfaces: Mechanical rupture of Pseudomonas
               https://doi.org/10.2147/IJN.S121956                aeruginosa cells by cicada wings. Small, 8(16): 2489.
            15.  Razavi M, Salahinejad E, Fahmy M,  et al., 2015, Green      https://doi.org/10.1002/smll.201200528
               chemical and biological synthesis of nanoparticles
               and their biomedical applications. In: Green Processes   27.  Jakinala P, Lingampally N, Hameeda B,  et al., 2020,
               for Nanotechnology: From Inorganic to Bioinspired   Insect wing extract: A novel source for green synthesis of
               Nanomaterials. Germany: Springer. p207–235.        nanoparticles of antioxidant and antimicrobial potential.
                                                                  bioRxiv, 2020-10.
            16.  Nadaroglu H, Güngör AA, İnce S. 2017, Synthesis of
               nanoparticles by green synthesis method.  Int J Innov Res      https://doi.org/10.1101/2020.10.21.348458
               Rev, 1(1): 6–9.                                 28.  Soni A, Brightwell G, 2022, Nature-inspired antimicrobial
            17.  Aswathi VP, Meera S, Maria CA, et al, 2023, Green synthesis   surfaces and their potential applications in food industries.
               of nanoparticles from biodegradable waste extracts and   Foods, 11(6): 844.
               their applications: A  critical review.  Nanotechnol Environ      https://doi.org/10.3390/foods11060844


            Volume 2 Issue 4 (2023)                         8                        https://doi.org/10.36922/gpd.2155
   76   77   78   79   80   81   82   83   84   85   86