Page 81 - GPD-2-4
P. 81
Gene & Protein in Disease Carpenter bee a substrate for green synthesis
https://doi.org/10.1002/jcla.24655 Eng, 8(2): 377–97.
6. Daria S, Islam MR, 2022, Indiscriminate use of antibiotics 18. Singh J, Dutta T, Kim KH, et al., 2018, Green’synthesis of
for COVID-19 treatment in South Asian countries is a metals and their oxide nanoparticles: Applications for
threat for future pandemics due to antibiotic resistance. Clin environmental remediation. J Nanobiotechnology, 16(1): 84.
Pathol, 15. https://doi.org/10.1186/s12951-018-0408-4
https://doi.org/10.1177/2632010X221099889 19. Alsammarraie FK, Wang W, Zhou P, et al., 2018, Green
7. Band VI, Weiss DS, 2019, Heteroresistance: A cause of synthesis of silver nanoparticles using turmeric extracts and
unexplained antibiotic treatment failure? PLoS Pathogens, investigation of their antibacterial activities. Colloids Surf B
15(6): e1007726. Biointerfaces, 171: 398–405.
https://doi.org/10.1371/journal.ppat.1007726 https://doi.org/10.1016/j.colsurfb.2018.07.059
8. Flynn CE, Guarner J, 2023, Emerging antimicrobial 20. Devi HS, Boda MA, Shah MA, et al., 2019, Green synthesis
resistance. Mod Pathol, 36: 100249. of iron oxide nanoparticles using Platanus orientalis leaf
extract for antifungal activity. Green Process Synth, 8(1):
https://doi.org/10.1016/j.modpat.2023.100249 38–45.
9. Stewart H, 2023, Alexander Fleming, antibiotic resistance, https://doi.org/10.1515/gps-2017-0145
and relevant lessons for the mitigation of risk from advanced
artificial intelligence. 21. Lahiri D, Nag M, Sheikh HI, et al., 2021, Microbiologically
synthesized nanoparticles and their role in silencing the
10. Baptista PV, McCusker MP, Carvalho A, et al., 2018, Nano- biofilm signaling cascade. Front Microbiol, 12: 636588.
strategies to fight multidrug resistant bacteria-‘A battle of
the titans’. Front Microbiol, 9: 1441. https://doi.org/10.3389/fmicb.2021.636588
22. Elsakhawy T, Omara AE, Abowaly M, et al., 2022, Green
https://doi.org/10.3389/fmicb.2018.01441.
synthesis of nanoparticles by mushrooms: A crucial dimension
11. Kumar R, Aadil KR, Ranjan S, et al., 2020, Advances for sustainable soil management. Sustainability, 14(7): 4328.
in nanotechnology and nanomaterials-based strategies
for neural tissue engineering. J Drug Deliv Sci Technol, https://doi.org/10.3390/su14074328
57: 101617. 23. Selvakesavan RK, Franklin G, 2021, Prospective application
of nanoparticles green synthesized using medicinal plant
https://doi.org/10.1016/j.jddst.2020.101617
extracts as novel nanomedicines. Nanotechnol Sci Appl,
12. Munir MU, Ahmed A, Usman M, et al., 2020, Recent 14: 179–195.
advances in nanotechnology-aided materials in combating
microbial resistance and functioning as antibiotics https://doi.org/10.2147/NSA.S333467
substitutes. Int J Nanomedicine, 15: 7329–7358. 24. Ajaykumar AP, Sabira O, Sebastian M, et al., 2023, A novel
approach for the biosynthesis of silver nanoparticles using
https://doi.org/10.2147/IJN.S265934
the defensive gland extracts of the beetle, Luprops tristis
13. Pasika SR, Bulusu R, Rao BV, et al., 2023, Nanotechnology Fabricius. Sci Rep, 13(1): 10186.
for biomedical applications. In: Nanomaterials: Advances and 25. Stavenga DG, 2023, Pigmentary colouration of hairy carpenter
Applications. Singapore: Springer Nature Singapore. p297–327.
bees, genus Xylocopa. Naturwissenschaften, 110(3): 22.
14. Wang L, Hu C, Shao L, 2017, The antimicrobial activity of https://doi.org/10.1007/s00114-023-01854-9
nanoparticles: Present situation and prospects for the future.
Int J Nanomed, 12: 1227–1249. 26. Ivanova EP, Hasan J, Webb HK, et al., 2012, Natural
bactericidal surfaces: Mechanical rupture of Pseudomonas
https://doi.org/10.2147/IJN.S121956 aeruginosa cells by cicada wings. Small, 8(16): 2489.
15. Razavi M, Salahinejad E, Fahmy M, et al., 2015, Green https://doi.org/10.1002/smll.201200528
chemical and biological synthesis of nanoparticles
and their biomedical applications. In: Green Processes 27. Jakinala P, Lingampally N, Hameeda B, et al., 2020,
for Nanotechnology: From Inorganic to Bioinspired Insect wing extract: A novel source for green synthesis of
Nanomaterials. Germany: Springer. p207–235. nanoparticles of antioxidant and antimicrobial potential.
bioRxiv, 2020-10.
16. Nadaroglu H, Güngör AA, İnce S. 2017, Synthesis of
nanoparticles by green synthesis method. Int J Innov Res https://doi.org/10.1101/2020.10.21.348458
Rev, 1(1): 6–9. 28. Soni A, Brightwell G, 2022, Nature-inspired antimicrobial
17. Aswathi VP, Meera S, Maria CA, et al, 2023, Green synthesis surfaces and their potential applications in food industries.
of nanoparticles from biodegradable waste extracts and Foods, 11(6): 844.
their applications: A critical review. Nanotechnol Environ https://doi.org/10.3390/foods11060844
Volume 2 Issue 4 (2023) 8 https://doi.org/10.36922/gpd.2155

