Page 82 - GPD-2-4
P. 82
Gene & Protein in Disease Carpenter bee a substrate for green synthesis
29. Ewunkem AJ, A’lyiha FB, Justice BL, et al., 2023, Honeybee https://doi.org/10.1351/pac200072010053
wings hold antibiofouling and antimicrobial clues for 40. Khatami M, Iravani S, Varma RS, et al., 2019, Cockroach
improved applications in health care and industries. AIMS
Microbiol, 9(2): 332. wings-promoted safe and greener synthesis of silver
nanoparticles and their insecticidal activity. Bioprocess
https://doi.org/10.3934/microbiol.2023018 Biosyst Eng, 42: 2007–2014.
30. Tszydel M, Sztajnowski S, Michalak M, et al., 2009, Structure 41. Jain D, Kachhwaha S, Jain R, et al., 2010, Novel microbial route
and physical and chemical properties of fibres from the to synthesize silver nanoparticles using spore crystal mixture
fifth larval instar of caddis-flies of the species Hydropsyche of Bacillus thuringiensis. Indian J Exp Biol, 48: 1152–1156.
angustipennis. Fibres Text East Eur, 6(77): 7–12.
42. Lim YH, Tiemann KM, Hunstad DA, et al., 2016, Polymeric
31. Lateef A, Ojo SA, Azeez MA, et al., 2016, Cobweb as novel nanoparticles in development for treatment of pulmonary
biomaterial for the green and eco-friendly synthesis of silver infectious diseases. Wiley Interdiscip Rev Nanomed
nanoparticles. Appl Nanosci, 6: 863–874. Nanobiotechnol, 8(6): 842–871.
https://doi.org/10.1007/s13204-015-0492-9 https://doi.org/10.1002/wnan.1401
32. Jakinala P, Lingampally N, Hameeda B, et al., 2021, Silver 43. Makabenta JM, Nabawy A, Li CH, et al., 2021, Nanomaterial-
nanoparticles from insect wing extract: Biosynthesis and based therapeutics for antibiotic-resistant bacterial
evaluation for antioxidant and antimicrobial potential. PLoS infections. Nat Rev Microbiol, 19(1): 23–36.
One, 16(3): e0241729.
https://doi.org/10.1038/s41579-020-0420-1
https://doi.org/10.1371/journal.pone.0241729
44. Sayed FA, Eissa NG, Shen Y, et al., 2022, Morphologic design
33. Eloff JN, 1998, A sensitive and quick microplate method to of nanostructures for enhanced antimicrobial activity.
determine the minimal inhibitory concentration of plant J Nanobiotechnol, 20(1): 1–18.
extracts for bacteria. Planta Med, 64: 711–713.
https://doi.org/10.2147/IJN.S246764
https://doi.org/10.1055/s-2006-957563
45. Yin IX, Zhang J, Zhao IS, et al., 2020, The antibacterial
34. Tian B, Liu Y, Chen D, 2021. Adhesion behavior of silica mechanism of silver nanoparticles and its application in
nanoparticles with bacteria: Spectroscopy measurements dentistry. Int J Nanomed, 2020: 2555–2562.
based on kinetics, and molecular docking. J Mole Liquids,
343: 117651. https://doi.org/10.2147/IJN.S246764
https://doi.org/10.1016/j.molliq.2021.117651 46. More PR, Pandit S, Filippis AD, et al., 2023, Silver
nanoparticles: Bactericidal and mechanistic approach
35. Veerasamy R, Xin TZ, Gunasagaran S, et al., 2011, against drug resistant pathogens. Microorganisms, 11(2): 369.
Biosynthesis of silver nanoparticles using mangosteen leaf
extract and evaluation of their antimicrobial activities. https://doi.org/10.3390/microorganisms11020369
J Saudi Chem Soc, 15(2): 113–120. 47. Meikle TG, Dyett BP, Strachan JB, et al., 2020, Preparation,
https://doi.org/10.1016/j.jscs.2010.06.004 characterization, and antimicrobial activity of cubosome
encapsulated metal nanocrystals. ACS Appl Mater Interfaces,
36. Mohanta YK, Nayak D, Biswas K, et al., 2018, Silver 12(6): 6944–6954.
nanoparticles synthesized using wild mushroom show
potential antimicrobial activities against food borne https://doi.org/10.1021/acsami.9b21783
pathogens. Molecules, 23(3): 655. 48. Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Márquez EA,
https://doi.org/10.3390/molecules23030655 et al., 2017, Dose-dependent antimicrobial activity of
silver nanoparticles on polycaprolactone fibers against
37. Farrag HM, Mostafa FA, Mohamed ME, 2020, Green gram-positive and gram-negative bacteria. J Nanomater,
biosynthesis of silver nanoparticles by Aspergillus niger 2017: 4752314.
and its antiamoebic effect against Allovahlkampfia spelaea
trophozoite and cyst. Exp Parasitol, 219: 108031. https://doi.org/10.1155/2017/4752314
https://doi.org/10.1016/j.exppara.2020.108031 49. Malarkodi C, Rajeshkumar S, Paulkumar K, et al., 2013,
Biosynthesis of semiconductor nanoparticles by using
38. Kagithoju S, Godishala V, Nanna RS, 2015, Eco-friendly and
green synthesis of silver nanoparticles using leaf extract of sulfur reducing bacteria Serratia nematodiphila. Adv Nano
Res, 1: 83.
Strychnos potatorum Linn. F. and their bactericidal activities.
3 Biotech, 5: 709–714. https://doi.org/10.12989/anr.2013.1.2.083
39. Pileni MP, 2000, Fabrication and physical properties of self- 50. Dakal TC, Kumar A, Majumdar RS, et al., 2016, Mechanistic
organized silver nanocrystals. Pure Appl Chem, 72(1–2): basis of antimicrobial actions of silver nanoparticles. Front
53–65. Microbiol, 7: 1831.
Volume 2 Issue 4 (2023) 9 https://doi.org/10.36922/gpd.2155

