Page 82 - GPD-2-4
P. 82

Gene & Protein in Disease                                        Carpenter bee a substrate for green synthesis



            29.  Ewunkem AJ, A’lyiha FB, Justice BL, et al., 2023, Honeybee      https://doi.org/10.1351/pac200072010053
               wings hold antibiofouling and antimicrobial clues for   40.  Khatami M, Iravani S, Varma RS, et al., 2019, Cockroach
               improved applications in health care and industries. AIMS
               Microbiol, 9(2): 332.                              wings-promoted safe  and  greener  synthesis  of  silver
                                                                  nanoparticles  and  their  insecticidal  activity.  Bioprocess
               https://doi.org/10.3934/microbiol.2023018          Biosyst Eng, 42: 2007–2014.
            30.  Tszydel M, Sztajnowski S, Michalak M, et al., 2009, Structure   41.  Jain D, Kachhwaha S, Jain R, et al., 2010, Novel microbial route
               and physical and chemical properties of fibres from the   to synthesize silver nanoparticles using spore crystal mixture
               fifth larval instar of caddis-flies of the species Hydropsyche   of Bacillus thuringiensis. Indian J Exp Biol, 48: 1152–1156.
               angustipennis. Fibres Text East Eur, 6(77): 7–12.
                                                               42.  Lim YH, Tiemann KM, Hunstad DA, et al., 2016, Polymeric
            31.  Lateef A, Ojo SA, Azeez MA, et al., 2016, Cobweb as novel   nanoparticles in development for treatment of pulmonary
               biomaterial for the green and eco-friendly synthesis of silver   infectious diseases.  Wiley  Interdiscip  Rev  Nanomed
               nanoparticles. Appl Nanosci, 6: 863–874.           Nanobiotechnol, 8(6): 842–871.
               https://doi.org/10.1007/s13204-015-0492-9          https://doi.org/10.1002/wnan.1401
            32.  Jakinala P, Lingampally N, Hameeda B, et al., 2021, Silver   43.  Makabenta JM, Nabawy A, Li CH, et al., 2021, Nanomaterial-
               nanoparticles from insect wing extract: Biosynthesis and   based therapeutics  for antibiotic-resistant bacterial
               evaluation for antioxidant and antimicrobial potential. PLoS   infections. Nat Rev Microbiol, 19(1): 23–36.
               One, 16(3): e0241729.
                                                                  https://doi.org/10.1038/s41579-020-0420-1
               https://doi.org/10.1371/journal.pone.0241729
                                                               44.  Sayed FA, Eissa NG, Shen Y, et al., 2022, Morphologic design
            33.  Eloff JN, 1998, A sensitive and quick microplate method to   of nanostructures for enhanced antimicrobial activity.
               determine the minimal inhibitory concentration of plant   J Nanobiotechnol, 20(1): 1–18.
               extracts for bacteria. Planta Med, 64: 711–713.
                                                                  https://doi.org/10.2147/IJN.S246764
               https://doi.org/10.1055/s-2006-957563
                                                               45.  Yin IX, Zhang J, Zhao IS,  et al., 2020, The antibacterial
            34.  Tian B, Liu Y, Chen D, 2021. Adhesion behavior of silica   mechanism of silver nanoparticles and its application in
               nanoparticles with bacteria: Spectroscopy measurements   dentistry. Int J Nanomed, 2020: 2555–2562.
               based on kinetics, and molecular docking. J Mole Liquids,
               343: 117651.                                       https://doi.org/10.2147/IJN.S246764
               https://doi.org/10.1016/j.molliq.2021.117651    46.  More  PR,  Pandit  S,  Filippis  AD,  et al.,  2023,  Silver
                                                                  nanoparticles: Bactericidal and mechanistic approach
            35.  Veerasamy R, Xin TZ, Gunasagaran S,  et al., 2011,   against drug resistant pathogens. Microorganisms, 11(2): 369.
               Biosynthesis of silver nanoparticles using mangosteen leaf
               extract and evaluation of their antimicrobial activities.      https://doi.org/10.3390/microorganisms11020369
               J Saudi Chem Soc, 15(2): 113–120.               47.  Meikle TG, Dyett BP, Strachan JB, et al., 2020, Preparation,
               https://doi.org/10.1016/j.jscs.2010.06.004         characterization, and antimicrobial activity of cubosome
                                                                  encapsulated metal nanocrystals. ACS Appl Mater Interfaces,
            36.  Mohanta YK, Nayak D, Biswas K,  et  al., 2018, Silver   12(6): 6944–6954.
               nanoparticles synthesized using wild mushroom show
               potential antimicrobial activities against food borne      https://doi.org/10.1021/acsami.9b21783
               pathogens. Molecules, 23(3): 655.               48.  Pazos-Ortiz  E,  Roque-Ruiz  JH,  Hinojos-Márquez  EA,
               https://doi.org/10.3390/molecules23030655          et al., 2017, Dose-dependent antimicrobial activity of
                                                                  silver nanoparticles on polycaprolactone fibers against
            37.  Farrag HM, Mostafa FA, Mohamed ME, 2020, Green   gram-positive and gram-negative bacteria.  J  Nanomater,
               biosynthesis of silver nanoparticles by  Aspergillus niger   2017: 4752314.
               and its antiamoebic effect against Allovahlkampfia spelaea
               trophozoite and cyst. Exp Parasitol, 219: 108031.     https://doi.org/10.1155/2017/4752314
               https://doi.org/10.1016/j.exppara.2020.108031   49.  Malarkodi C, Rajeshkumar S, Paulkumar K,  et al., 2013,
                                                                  Biosynthesis of semiconductor nanoparticles by using
            38.  Kagithoju S, Godishala V, Nanna RS, 2015, Eco-friendly and
               green synthesis of silver nanoparticles using leaf extract of   sulfur reducing bacteria Serratia nematodiphila. Adv Nano
                                                                  Res, 1: 83.
               Strychnos potatorum Linn. F. and their bactericidal activities.
               3 Biotech, 5: 709–714.                             https://doi.org/10.12989/anr.2013.1.2.083
            39.  Pileni MP, 2000, Fabrication and physical properties of self-  50.  Dakal TC, Kumar A, Majumdar RS, et al., 2016, Mechanistic
               organized silver nanocrystals.  Pure Appl Chem, 72(1–2):   basis of antimicrobial actions of silver nanoparticles. Front
               53–65.                                             Microbiol, 7: 1831.


            Volume 2 Issue 4 (2023)                         9                        https://doi.org/10.36922/gpd.2155
   77   78   79   80   81   82   83   84   85   86   87