Page 53 - IJAMD-1-3
P. 53
International Journal of AI for
Materials and Design
Metal AM porosity prediction using ML
3. Gradl P, Tinker DC, Park A, et al. Robust metal additive doi: 10.1080/10426914.2019.1655151
manufacturing process selection and development 14. Zieliński TG, Opiela KC, Pawłowski P, et al. Reproducibility
for aerospace components. J Mater Eng Perform. of sound-absorbing periodic porous materials using additive
2022;31(8):6013-6044.
manufacturing technologies: Round robin study. Addit
doi: 10.1007/s11665-022-06850-0 Manuf. 2020;36:101564.
4. Mahale RS, Shamanth V, Hemanth K, et al. Processes and doi: 10.1016/j.addma.2020.101564
applications of metal additive manufacturing. Mater Today 15. Faragasso A, Bonsignorio F. Reproducibility challenges in
Proc. 2022;54:228-233.
robotic surgery. Front Robot AI. 2023;10:1127972.
doi: 10.1016/j.matpr.2021.08.298
doi: 10.3389/frobt.2023.1127972
5. Hehr A, Norfolk M, Kominsky D, Boulanger A, 16. Li X, Zhang M, Zhou M, et al. Qualify assessment for
Davis M, Boulware P. Smart build-plate for metal additive extrusion-based additive manufacturing with 3D scan and
manufacturing processes. Sensors (Basel). 2020;20(2):360.
machine learning. J Manuf Processes. 2023;90:274-285.
doi: 10.3390/s20020360
doi: 10.1016/j.jmapro.2023.01.025
6. Huang WB, Zhang LW, Li WL, et al. Various types and 17. Gu Z, Mani Krishna KV, Parsazadeh M, et al. Deep learning-
applications of additive manufacturing. DEStech Trans based melt pool and porosity detection in components
Comput Sci Eng. 2019:377-381.
fabricated by laser powder bed fusion. Prog Addit Manuf.
doi: 10.12783/dtcse/ammso2019/30160 2024:1-18.
7. Papy K, Jean‑Marc S, Alexey S, Andras B. Additive doi: 10.1007/s40964-024-00603-2
manufacturing feasibility of WC-17Co cermet parts by laser 18. Atwya M, Panoutsos G. In-situ porosity prediction in metal
powder bed fusion. Procedia CIRP. 2022;111:153-157.
powder bed fusion additive manufacturing using spectral
doi: 10.1016/j.procir.2022.08.049 emissions: A prior-guided machine learning approach.
J Intell Manuf. 2024;35(6):2719-2742.
8. Dejene ND, Lemu HG. Current status and challenges of
powder bed fusion-based metal additive manufacturing: doi: 10.1007/s10845-023-02170-9
Literature review. Metals. 2023;13(2):424.
19. Satterlee N, Torresani E, Olevsky E, Kang JS. Comparison
doi: 10.3390/met13020424 of machine learning methods for automatic classification
of porosities in powder-based additive manufactured metal
9. Hussain SZ, Kausar Z, Koreshi ZU, Shah MF, Abdullah A,
Farooq MU. Linear active disturbance rejection control for parts. Int J Adv Manuf Technol. 2022;120(9):6761-6776.
a laser powder bed fusion additive manufacturing process. doi: 10.1007/s00170-022-09141-z
Electronics. 2023;12(2):471.
20. Wang W, Ning J, Liang SY. Analytical prediction of keyhole
doi: 10.3390/electronics12020471 porosity in laser powder bed fusion. Int J Adv Manuf Technol.
2022;119(11):6995-7002.
10. Pan T, Li L, Zhang X, et al. Investigation of significant factors
on deformation with powder bed fusion system. Proc Inst doi: 10.1007/s00170-021-08276-9
Mech Eng B J Eng Manuf. 2021;235(5):902-911.
21. Liu R, Liu S, Zhang X. A physics-informed machine
doi: 10.1177/0954405420970088 learning model for porosity analysis in laser powder bed
fusion additive manufacturing. Int J Adv Manuf Technol.
11. Ford S, Despeisse M. Additive manufacturing and
sustainability: An exploratory study of the advantages and 2021;113(7):1943-1958.
challenges. J Clean Prod. 2016;137:1573-1587. doi: 10.1007/s00170-021-06640-3
doi: 10.1016/j.jclepro.2016.04.150 22. Ero O, Taherkhani K, Hemmati Y, Toyserkani E. An
integrated fuzzy logic and machine learning platform
12. Gradl PR, Tinker DC, Ivester J, Skinner SW, Teasley T,
Bili JL. Geometric feature reproducibility for laser powder for porosity detection using optical tomography imaging
bed fusion (L-PBF) additive manufacturing with Inconel during laser powder bed fusion. Int J Extrem Manuf.
718. Addit Manuf. 2021;47:102305. 2024;6(6):065601.
doi: 10.1088/2631-7990/ad65cd
doi: 10.1016/j.addma.2021.102305
23. Mohammed AS, Almutahhar M, Sattar K, Alhajeri A,
13. Kayacan MY, Özsoy K, Duman B, Yilmaz N, Kayacan MC.
A study on elimination of failures resulting from layering Nazir A, Ali U. Deep learning based porosity prediction
and internal stresses in Powder Bed Fusion (PBF) for additively manufactured laser powder-bed fusion parts.
additive manufacturing. Mater Manuf Processes. J Mater Res Technol. 2023;27:7330-7335.
2019;34(13):1467-1475. doi: 10.1016/j.jmrt.2023.11.130
Volume 1 Issue 3 (2024) 47 doi: 10.36922/ijamd.4812

