Page 53 - IJAMD-1-3
P. 53

International Journal of AI for
            Materials and Design
                                                                                  Metal AM porosity prediction using ML


            3.   Gradl P, Tinker DC, Park A,  et  al. Robust metal additive      doi: 10.1080/10426914.2019.1655151
               manufacturing process selection and development   14.  Zieliński TG, Opiela KC, Pawłowski P, et al. Reproducibility
               for aerospace components.  J  Mater Eng Perform.   of sound-absorbing periodic porous materials using additive
               2022;31(8):6013-6044.
                                                                  manufacturing technologies: Round robin study.  Addit
               doi: 10.1007/s11665-022-06850-0                    Manuf. 2020;36:101564.
            4.   Mahale RS, Shamanth V, Hemanth K, et al. Processes and      doi: 10.1016/j.addma.2020.101564
               applications of metal additive manufacturing. Mater Today   15.  Faragasso A, Bonsignorio F. Reproducibility challenges in
               Proc. 2022;54:228-233.
                                                                  robotic surgery. Front Robot AI. 2023;10:1127972.
               doi: 10.1016/j.matpr.2021.08.298
                                                                  doi: 10.3389/frobt.2023.1127972
            5.   Hehr  A,  Norfolk  M,  Kominsky  D,  Boulanger  A,   16.  Li X, Zhang M, Zhou M,  et al. Qualify assessment for
               Davis M, Boulware P. Smart build-plate for metal additive   extrusion-based additive manufacturing with 3D scan and
               manufacturing processes. Sensors (Basel). 2020;20(2):360.
                                                                  machine learning. J Manuf Processes. 2023;90:274-285.
               doi: 10.3390/s20020360
                                                                  doi: 10.1016/j.jmapro.2023.01.025
            6.   Huang WB, Zhang LW, Li WL,  et al.  Various  types  and   17.  Gu Z, Mani Krishna KV, Parsazadeh M, et al. Deep learning-
               applications of additive manufacturing.  DEStech  Trans   based melt pool and porosity detection in components
               Comput Sci Eng. 2019:377-381.
                                                                  fabricated by laser powder bed fusion. Prog Addit Manuf.
               doi: 10.12783/dtcse/ammso2019/30160                2024:1-18.
            7.   Papy  K,  Jean‑Marc  S,  Alexey  S,  Andras  B.  Additive      doi: 10.1007/s40964-024-00603-2
               manufacturing feasibility of WC-17Co cermet parts by laser   18.  Atwya M, Panoutsos G. In-situ porosity prediction in metal
               powder bed fusion. Procedia CIRP. 2022;111:153-157.
                                                                  powder bed fusion additive manufacturing using spectral
               doi: 10.1016/j.procir.2022.08.049                  emissions: A  prior-guided machine learning approach.
                                                                  J Intell Manuf. 2024;35(6):2719-2742.
            8.   Dejene ND, Lemu HG. Current status and challenges of
               powder bed fusion-based metal additive manufacturing:      doi: 10.1007/s10845-023-02170-9
               Literature review. Metals. 2023;13(2):424.
                                                               19.  Satterlee N, Torresani E, Olevsky E, Kang JS. Comparison
               doi: 10.3390/met13020424                           of machine learning methods for automatic classification
                                                                  of porosities in powder-based additive manufactured metal
            9.   Hussain SZ, Kausar Z, Koreshi ZU, Shah MF, Abdullah A,
               Farooq MU. Linear active disturbance rejection control for   parts. Int J Adv Manuf Technol. 2022;120(9):6761-6776.
               a laser powder bed fusion additive manufacturing process.      doi: 10.1007/s00170-022-09141-z
               Electronics. 2023;12(2):471.
                                                               20.  Wang W, Ning J, Liang SY. Analytical prediction of keyhole
               doi: 10.3390/electronics12020471                   porosity in laser powder bed fusion. Int J Adv Manuf Technol.
                                                                  2022;119(11):6995-7002.
            10.  Pan T, Li L, Zhang X, et al. Investigation of significant factors
               on deformation with powder bed fusion system. Proc Inst      doi: 10.1007/s00170-021-08276-9
               Mech Eng B J Eng Manuf. 2021;235(5):902-911.
                                                               21.  Liu R, Liu S, Zhang X. A  physics-informed machine
               doi: 10.1177/0954405420970088                      learning model for porosity analysis in laser powder bed
                                                                  fusion additive manufacturing.  Int J Adv Manuf Technol.
            11.  Ford  S, Despeisse  M.  Additive  manufacturing  and
               sustainability: An exploratory study of the advantages and   2021;113(7):1943-1958.
               challenges. J Clean Prod. 2016;137:1573-1587.      doi: 10.1007/s00170-021-06640-3
               doi: 10.1016/j.jclepro.2016.04.150              22.  Ero  O,  Taherkhani  K,  Hemmati  Y,  Toyserkani  E.  An
                                                                  integrated fuzzy logic and machine learning platform
            12.  Gradl  PR,  Tinker  DC,  Ivester  J,  Skinner  SW,  Teasley  T,
               Bili JL. Geometric feature reproducibility for laser powder   for porosity detection using optical tomography imaging
               bed fusion (L-PBF) additive manufacturing with Inconel   during laser powder bed fusion.  Int J Extrem Manuf.
               718. Addit Manuf. 2021;47:102305.                  2024;6(6):065601.
                                                                  doi: 10.1088/2631-7990/ad65cd
               doi: 10.1016/j.addma.2021.102305
                                                               23.  Mohammed  AS,  Almutahhar  M,  Sattar  K,  Alhajeri  A,
            13.  Kayacan MY, Özsoy K, Duman B, Yilmaz N, Kayacan MC.
               A study on elimination of failures resulting from layering   Nazir  A,  Ali  U.  Deep  learning  based  porosity  prediction
               and internal stresses in Powder Bed Fusion (PBF)   for additively manufactured laser powder-bed fusion parts.
               additive  manufacturing.  Mater  Manuf  Processes.   J Mater Res Technol. 2023;27:7330-7335.
               2019;34(13):1467-1475.                             doi: 10.1016/j.jmrt.2023.11.130


            Volume 1 Issue 3 (2024)                         47                             doi: 10.36922/ijamd.4812
   48   49   50   51   52   53   54   55   56   57   58