Page 55 - IJAMD-1-3
P. 55
International Journal of AI for
Materials and Design
Metal AM porosity prediction using ML
48. Wang L, Sugiyama M, Yang C, Zhou ZH, Feng J. On the 54. Monu MC, Ekoi EJ, Hughes C, Kumar S, Brabazon D.
Margin Explanation of Boosting Algorithms. In: 21 Annual Resultant physical properties of as-built nitinol processed
st
Conference on Learning Theory - COLT 2008. Helsinki, at specific volumetric energy densities and correlation
Finland; 2008. p. 479-490. with in-situ melt pool temperatures. J Mater Res Technol.
49. Friedman JH. Greedy function approximation: A gradient 2022;21:2757-2777.
boosting machine. Ann Stat. 2001;1:1189-1232. doi: 10.1016/j.jmrt.2022.10.073
doi: 10.1214/aos/1013203451 55. McCann R, Obeidi MA, Hughes C, et al. In-situ sensing,
50. Chen T, Guestrin C. Xgboost: A Scalable Tree Boosting process monitoring and machine control in laser powder
System. In: Proceedings of the 22 Acm Sigkdd International bed fusion: A review. Addit Manuf. 2021;45:102058.
nd
Conference on Knowledge Discovery and Data Mining. 2016. doi: 10.1016/j.addma.2021.102058
p. 785-794.
56. Blum AL, Langley P. Selection of relevant features and examples
doi: 10.1145/2939672.2939785 in machine learning. Artif Intell. 1997;97(1-2):245-271.
51. Ogunleye A, Wang QG. XGBoost model for chronic kidney doi: 10.1016/S0004-3702(97)00063-5
disease diagnosis. IEEE/ACM Trans Comput Biol Bioinform.
2019;17(6):2131-2140. 57. Ho S, Zhang W, Young W, et al. DLAM: Deep learning based
real-time porosity prediction for additive manufacturing
doi: 10.1109/TCBB.2019.2911071 using thermal images of the melt pool. IEEE Access.
52. Gumus M, Kiran MS. Crude Oil Price Forecasting Using 2021;9:115100-115114.
XGBoost. In: 2017 International Conference on Computer doi: 10.1109/ACCESS.2021.3105362
Science and Engineering (UBMK). IEEE; 2017. p. 1100‑1103.
58. Dilip JJS, Zhang S, Teng C, et al. Influence of processing
53. Deng J, Xu Y, Zuo Z, Hou Z, Chen S. Bead geometry parameters on the evolution of melt pool, porosity, and
prediction for multi-layer and multi-bead wire and arc
additive manufacturing based. In: Transactions on Intelligent microstructures in Ti‑6Al‑4V alloy parts fabricated by
Welding Manufacturing. Vol. 2. Singapore: Springer; 2019. selective laser melting. Prog Addit Manuf. 2017;2:157-167.
p. 125-135. doi: 10.1007/s40964-017-0030-2
Volume 1 Issue 3 (2024) 49 doi: 10.36922/ijamd.4812

