Page 55 - IJAMD-1-3
P. 55

International Journal of AI for
            Materials and Design
                                                                                  Metal AM porosity prediction using ML


            48.  Wang L, Sugiyama M, Yang C, Zhou ZH, Feng J. On the   54.  Monu  MC,  Ekoi  EJ,  Hughes  C,  Kumar  S,  Brabazon  D.
               Margin Explanation of Boosting Algorithms. In: 21  Annual   Resultant physical properties of as-built nitinol processed
                                                    st
               Conference on Learning Theory  -  COLT 2008. Helsinki,   at specific volumetric energy densities and correlation
               Finland; 2008. p. 479-490.                         with  in-situ melt pool temperatures.  J  Mater Res Technol.
            49.  Friedman JH. Greedy function approximation: A gradient   2022;21:2757-2777.
               boosting machine. Ann Stat. 2001;1:1189-1232.      doi: 10.1016/j.jmrt.2022.10.073
               doi: 10.1214/aos/1013203451                     55.  McCann  R,  Obeidi  MA,  Hughes  C,  et al.  In-situ sensing,
            50.  Chen T, Guestrin C. Xgboost: A  Scalable Tree Boosting   process  monitoring  and  machine  control  in  laser  powder
               System. In: Proceedings of the 22  Acm Sigkdd International   bed fusion: A review. Addit Manuf. 2021;45:102058.
                                       nd
               Conference on Knowledge Discovery and Data Mining. 2016.      doi: 10.1016/j.addma.2021.102058
               p. 785-794.
                                                               56.  Blum AL, Langley P. Selection of relevant features and examples
               doi: 10.1145/2939672.2939785                       in machine learning. Artif Intell. 1997;97(1-2):245-271.
            51.  Ogunleye A, Wang QG. XGBoost model for chronic kidney      doi: 10.1016/S0004-3702(97)00063-5
               disease diagnosis. IEEE/ACM Trans Comput Biol Bioinform.
               2019;17(6):2131-2140.                           57.  Ho S, Zhang W, Young W, et al. DLAM: Deep learning based
                                                                  real-time porosity prediction for additive manufacturing
               doi: 10.1109/TCBB.2019.2911071                     using  thermal  images  of  the  melt  pool.  IEEE Access.
            52.  Gumus  M,  Kiran  MS.  Crude  Oil  Price  Forecasting  Using   2021;9:115100-115114.
               XGBoost. In:  2017 International Conference on Computer      doi: 10.1109/ACCESS.2021.3105362
               Science and Engineering (UBMK). IEEE; 2017. p. 1100‑1103.
                                                               58.  Dilip  JJS,  Zhang  S,  Teng  C,  et al. Influence of processing
            53.  Deng  J,  Xu  Y,  Zuo  Z,  Hou  Z,  Chen  S.  Bead  geometry   parameters on  the  evolution  of  melt  pool,  porosity,  and
               prediction for multi-layer and multi-bead wire and arc
               additive manufacturing based. In: Transactions on Intelligent   microstructures  in  Ti‑6Al‑4V  alloy  parts  fabricated  by
               Welding Manufacturing. Vol. 2. Singapore: Springer; 2019.   selective laser melting. Prog Addit Manuf. 2017;2:157-167.
               p. 125-135.                                        doi: 10.1007/s40964-017-0030-2











































            Volume 1 Issue 3 (2024)                         49                             doi: 10.36922/ijamd.4812
   50   51   52   53   54   55   56   57   58   59   60