Page 54 - IJAMD-1-3
P. 54

International Journal of AI for
            Materials and Design
                                                                                  Metal AM porosity prediction using ML


            24.  Estalaki  SM,  Lough  CS,  Landers  RG,  Kinzel  EC,  Luo  T.   Synthetic minority over-sampling technique.  J  Artif Intell
               Predicting defects in laser powder bed fusion using in-situ   Res. 2002;16:321-357.
               thermal imaging data and machine learning. Addit Manuf.
               2022;58:103008.                                    doi: 10.1613/jair.953
                                                               36.  Wilson DL. Asymptotic properties of nearest neighbor
               doi: 10.1016/j.addma.2022.103008
                                                                  rules using edited data.  IEEE Trans Syst Man Cybern.
            25.  Gordon  JV,  Narra  SP,  Cunningham  RW,  et al. Defect   1972;2(3):408-421.
               structure process maps for laser powder bed fusion additive
               manufacturing. Addit Manuf. 2020;36:101552.        doi: 10.1109/TSMC.1972.4309137
                                                               37.  Torgo L, Ribeiro RP, Pfahringer B, Branco P. Smote
               doi: 10.1016/j.addma.2020.101552
                                                                  for regression. In:  Portuguese Conference on Artificial
            26.  Du Plessis A. Effects of process parameters on porosity in   Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg;
               laser powder bed fusion revealed by X-ray tomography.   2013. p. 378-389.
               Addit Manuf. 2019;30:100871.
                                                               38.  Christ  M,  Braun  N,  Neuffer  J,  Kempa‑Liehr  AW.  Time
               doi: 10.1016/j.addma.2019.100871                   series feature extraction on basis of scalable hypothesis tests
            27.  Kan WH, Nadot Y, Foley M, Ridosz L, Proust G, Cairney JM.   (tsfresh-a python package). Neurocomputing. 2018;307:72-77.
               Factors that affect the properties of additively-manufactured      doi: 10.1016/j.neucom.2018.03.067
               AlSi10Mg: Porosity versus microstructure.  Addit Manuf.
               2019;29:100805.                                 39.  Peng CYJ, Lee KL, Ingersoll GM. An introduction to logistic
                                                                  regression analysis and reporting. J Educ Res. 2002;96(1):3-14.
               doi: 10.1016/j.addma.2019.100805
                                                                  doi: 10.1080/00220670209598786
            28.  Hojjatzadeh SMH, Parab ND, Guo Q,  et  al. Direct
               observation of pore formation mechanisms during LPBF   40.  Mahato  V,  Cunningham  P.  A  Case‑study  on  the  Impact
               additive manufacturing process and high energy density   of Dynamic Time Warping in Time Series Regression. In:
                                                                   rd
               laser welding. Int J Mach Tools Manuf. 2020;153:103555.  3  ECML/PKDD Workshop on Advanced Analytics and
                                                                  Learning on Temporal Data. 2018.
               doi: 10.1016/j.ijmachtools.2020.103555
                                                                  doi: 10.48550/arXiv.2010.05270
            29.  Vastola G, Pei QX, Zhang YW. Predictive model for porosity
               in powder-bed fusion additive manufacturing at high beam   41.  Mahato  V,  Obeidi  MA,  Brabazon  D,  Cunningham  P.  An
               energy regime. Addit Manuf. 2018;22:817-822.       evaluation of classification methods for 3d printing time-
                                                                  series data. IFAC-PapersOnLine. 2020;53(2):8211-8216.
               doi: 10.1016/j.addma.2018.05.042
                                                                  doi: 10.1016/j.ifacol.2020.12.1992
            30.  Sun S, Brandt M, Easton MJL. Powder bed fusion processes:
               An overview. Laser Additive Manufacturing. Sawston, UK:   42.  Badiane M, Cunningham P. An empirical evaluation of
               Woodhead Publishing; 2017. p. 55-77.               kernels for time series. Artif Intell Rev. 2022;55(3):1803-1820.
            31.  Mahato  V,  Obeidi  MA,  Brabazon  D,  Cunningham  P.  An      doi: 10.1007/s10462-021-10050-y
               evaluation of classification methods for 3d printing time-  43.  Safavian SR, Landgrebe D. A survey of decision tree classifier
               series data. IFAC-PapersOnLine. 2020;53(2):8211-8216.  methodology.  IEEE Trans Syst Man Cybern.  1991;21(3):
               doi: 10.1016/j.ifacol.2020.12.1992                 660-674.
            32.  Grasso  M,  Colosimo  BM.  Process  defects  and  in situ      doi: 10.1109/21.97458
               monitoring methods in metal powder bed fusion: A review.   44.  Breiman L. Random forests. Mach Learn. 2001;45:5-32.
               Meas Sci Technol. 2017;28(4):044005.
                                                                  doi: 10.1023/A:1010950718922
               doi: 10.1088/1361-6501/aa5c4f
                                                               45.  Biau  G,  Scornet  E.  A  random  forest  guided  tour.  Test.
            33.  Li Y, Gu D. Thermal behavior during selective laser melting of   2016;25:197-227.
               commercially pure titanium powder: Numerical simulation
               and experimental study. Addit Manuf. 2014;1:99-109.     doi: 10.1007/s11749-016-0481-7
               doi: 10.1016/j.addma.2014.09.001                46.  Geurts P, Ernst D, Wehenkel L. Extremely randomized trees.
                                                                  Mach Learn. 2006;63:3-42.
            34.  Yadav P, Rigo O, Arvieu C, Le Guen E, Lacoste E. In situ
               monitoring  systems  of  the  SLM  process:  On  the  need  to      doi: 10.1007/s10994-006-6226-1
               develop machine learning models for data processing.   47.  Freund Y, Schapire RE. A decision‑theoretic generalization
               Crystals. 2020;10(6):524.                          of on-line learning and an application to boosting. J Comput
               doi: 10.3390/cryst10060524                         Syst Sci. 1997;55(1):119-139.
            35.  Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE:      doi: 10.1007/3-540-59119-2_166


            Volume 1 Issue 3 (2024)                         48                             doi: 10.36922/ijamd.4812
   49   50   51   52   53   54   55   56   57   58   59