Page 15 - IJB-1-1
P. 15
Shuai Wang, Jia Min Lee and Wai Yee Yeong
http://dx.doi.org/10.1089/ten.2006.12.83. ginate/gelatin hydrogels. Jounal of Biomedical Materials
30. Fedorovich N E, De Wijn J R, Verbout A J, et al. 2008, Research Part A, vol.101A(5): 1255–1264.
Three-dimensional fiber deposition of cell-laden, viable, http://dx.doi.org/10.1002/jbm.a.34420.
patterned constructs for bone tissue printing. Tissue En- 41. Shim J-H, Lee J-S, Kim J Y, et al. 2012, Bioprinting of a
gineering Part A, vol.14(1): 127–133. mechanically enhanced three-dimensional dual cell-
http://dx.doi.org/10.1089/ten.a.2007.0158. laden construct for osteochondral tissue engineering us-
31. Kelm J M and Fussenegger M, 2004, Microscale tissue ing a multi-head tissue/organ building system. Journal of
engineering using gravity-enforced cell assembly. Trends Micromechanics and Microengineering, vol.22(8):
in Biotechnology, vol.22(4): 195–202. 085014.
http://dx.doi.org/10.1016/j.tibtech.2004.02.002. http://dx.doi.org/10.1088/0960-1317/22/8/085014.
32. Visser J, Peters B, Burger T J, et al. 2013, Biofabrication 42. Nishiyama Y, Nakamura M, Henmi C, et al. 2008, De-
of multi-material anatomically shaped tissue constructs. velopment of a three-dimensional bioprinter: construc-
Biofabrication, vol.5(3): 035007. tion of cell supporting structures using hydrogel and
http://dx.doi.org/10.1088/1758-5082/5/3/035007. state-of-the-art inkjet technology. Journal of Biome-
33. Billiet T, Gevaert E, De Schryver T, et al. 2014, The 3D chanical Engineering, vol.131(3): 035001.
printing of gelatin methacrylamide cell-laden tis- http://dx.doi.org/10.1115/1.3002759.
sue-engineered constructs with high cell viability. Bio- 43. Hill P S, Apel P J, Barnwell J, et al. 2011, Repair of pe-
materials, vol.35(1): 49–62. ripheral nerve defects in rabbits using keratin hydrogel
http://dx.doi.org/10.1016/j.biomaterials.2013.09.078. scaffolds. Tissue Engineering Part A, vol.17(11-12):
34. Xu T, Zhao W X, Zhu J M, et al. 2013, Complex hetero- 1499–1505.
geneous tissue constructs containing multiple cell types http://dx.doi.org/10.1089/ten.TEA.2010.0184.
prepared by inkjet printing technology. Biomaterials, 44. Cui X F and Boland T, 2009, Human microvasculature
vol.34(1): 130–139. fabrication using thermal inkjet printing technology.
http://dx.doi.org/10.1016/j.biomaterials.2012.09.035. Biomaterials, vol.30(31): 6221–6227.
35. Abeyewickreme A, Kwok A, McEwan J R, et al. 2009, http://dx.doi.org/10.1016/j.biomaterials.2009.07.056.
Bio-electrospraying embryonic stem cells: interrogating 45. Guillemot F, Guillotin B, Fontaine A, et al. 2011, La-
cellular viability and pluripotency. Integrative Biology, ser-assisted bioprinting to deal with tissue complexity in
vol.1(3): 260–266. regenerative medicine. MRS Bulletin, vol.36(12):
http://dx.doi.org/10.1039/B819889f. 1015–1019.
36. Fang Y, Frampton J P, Raghavan S, et al. 2012, Rapid http://dx.doi.org/10.1557/Mrs.2011.272.
generation of multiplexed cell cocultures using acoustic 46. Bertassoni L E, Cardoso J C, Manoharan V, et al. 2014,
droplet ejection followed by aqueous two-phase exclu- Direct-write bioprinting of cell-laden methacrylated ge-
sion patterning. Tissue Engineering Part C: Methods, latin hydrogels. Biofabrication, vol.6(2): 024105.
vol.18(9): 647–657. http://dx.doi.org/10.1088/1758-5082/6/2/024105.
http://dx.doi.org/10.1089/ten.TEC.2011.0709. 47. Chang C C, Boland E D, Williams S K, et al. 2011, Di-
37. Michael S, Sorg H, Peck C T, et al. 2013, Tissue engi- rect-write bioprinting three-dimensional biohybrid sys-
neered skin substitutes created by laser-assisted bio- tems for future regenerative therapies. Journal of Bio-
printing form skin-like structures in the dorsal skin fold medical Materials Research Part B-Applied Biomate-
chamber in mice. PLoS ONE, vol.8(3): e57741 rials, vol.98B(1): 160–170.
http://dx.doi.org/10.1371/journal.pone.0057741. http://dx.doi.org/10.1002/jbm.b.31831.
38. Soman P, Chung P H, Zhang A P, et al. 2013, Digital mi- 48. Kim J D, Choi J S, Kim B S, et al. 2010, Piezoelectric
crofabrication of user-defined 3D microstructures in inkjet printing of polymers: stem cell patterning on po-
cell-laden hydrogels. Biotechnology and Bioengineering, lymer substrates. Polymer, vol.51(10): 2147–2154.
vol.110(11): 3038–3047. http://dx.doi.org/10.1016/j.polymer.2010.03.038.
http://dx.doi.org/10.1002/Bit.24957. 49. Song S-J, Choi J, Park Y-D, et al. 2010, A
39. Okuda S, Inoue Y, Eiraku M, et al. 2015, Vertex dynam- three-dimensional bioprinting system for use with a hy-
ics simulations of viscosity-dependent deformation dur- drogel-based biomaterial and printing parameter cha-
ing tissue morphogenesis. Biomechanics and Modeling racterization. Artificial Organs, vol.34(11): 1044–1048.
in Mechanobiology, vol.14(2): 413–425. http://dx.doi.org/10.1111/j.1525-1594.2010.01143.x.
http://dx.doi.org/10.1007/s10237-014-0613-5. 50. Peppas N A, Bures P, Leobandung W, et al. 2000, Hy-
40. Duan B, Hockaday L A, Kang K H, et al. 2013, 3D bio- drogels in pharmaceutical formulations. European
printing of heterogeneous aortic valve conduits with al- Journal of Pharmaceutics and Biopharmaceutics, vol.50
International Journal of Bioprinting (2015)–Volume 1, Issue 1 11

