Page 15 - IJB-1-1
P. 15

Shuai Wang, Jia Min Lee and Wai Yee Yeong

                 http://dx.doi.org/10.1089/ten.2006.12.83.         ginate/gelatin hydrogels. Jounal of Biomedical Materials
              30.  Fedorovich N E, De Wijn J R, Verbout A J, et al. 2008,   Research Part A, vol.101A(5): 1255–1264.
                 Three-dimensional fiber deposition of cell-laden, viable,   http://dx.doi.org/10.1002/jbm.a.34420.
                 patterned constructs for bone tissue printing. Tissue En-  41.  Shim J-H, Lee J-S, Kim J Y, et al. 2012, Bioprinting of a
                 gineering Part A, vol.14(1): 127–133.             mechanically  enhanced three-dimensional dual cell-
                 http://dx.doi.org/10.1089/ten.a.2007.0158.        laden construct for osteochondral tissue engineering us-
              31.  Kelm J M and Fussenegger M, 2004, Microscale tissue   ing a multi-head tissue/organ building system. Journal of
                 engineering using gravity-enforced cell assembly. Trends   Micromechanics and Microengineering, vol.22(8):
                 in Biotechnology, vol.22(4): 195–202.             085014.
                 http://dx.doi.org/10.1016/j.tibtech.2004.02.002.   http://dx.doi.org/10.1088/0960-1317/22/8/085014.
              32.  Visser J, Peters B, Burger T J, et al. 2013, Biofabrication   42.  Nishiyama Y, Nakamura M, Henmi C, et al. 2008, De-
                 of multi-material anatomically shaped tissue constructs.   velopment of  a three-dimensional bioprinter: construc-
                 Biofabrication, vol.5(3): 035007.                 tion of cell supporting structures using  hydrogel and
                 http://dx.doi.org/10.1088/1758-5082/5/3/035007.   state-of-the-art inkjet technology.  Journal of Biome-
              33.  Billiet T, Gevaert E, De Schryver T, et al. 2014, The 3D   chanical Engineering, vol.131(3): 035001.
                 printing  of gelatin methacrylamide cell-laden tis-  http://dx.doi.org/10.1115/1.3002759.
                 sue-engineered constructs with  high cell viability.  Bio-  43.  Hill P S, Apel P J, Barnwell J, et al. 2011, Repair of pe-
                 materials, vol.35(1): 49–62.                      ripheral nerve defects in rabbits using keratin hydrogel
                 http://dx.doi.org/10.1016/j.biomaterials.2013.09.078.   scaffolds.  Tissue Engineering  Part A, vol.17(11-12):
              34.  Xu T, Zhao W X, Zhu J M, et al. 2013, Complex hetero-  1499–1505.
                 geneous tissue constructs containing multiple cell types   http://dx.doi.org/10.1089/ten.TEA.2010.0184.
                 prepared by inkjet printing technology.  Biomaterials,   44.  Cui X F and Boland T, 2009, Human microvasculature
                 vol.34(1): 130–139.                               fabrication using thermal inkjet printing technology.
                 http://dx.doi.org/10.1016/j.biomaterials.2012.09.035.   Biomaterials, vol.30(31): 6221–6227.
              35.  Abeyewickreme A, Kwok A, McEwan J R, et al. 2009,   http://dx.doi.org/10.1016/j.biomaterials.2009.07.056.
                 Bio-electrospraying embryonic stem cells: interrogating   45.  Guillemot F, Guillotin B, Fontaine A,  et al.  2011, La-
                 cellular viability and  pluripotency.  Integrative Biology,   ser-assisted bioprinting to deal with tissue complexity in
                 vol.1(3): 260–266.                                regenerative medicine.  MRS Bulletin, vol.36(12):
                 http://dx.doi.org/10.1039/B819889f.               1015–1019.
              36.  Fang Y, Frampton J P, Raghavan S, et al. 2012, Rapid   http://dx.doi.org/10.1557/Mrs.2011.272.
                 generation of multiplexed cell cocultures using acoustic   46.  Bertassoni L E, Cardoso J C, Manoharan V, et al. 2014,
                 droplet ejection followed by  aqueous two-phase exclu-  Direct-write bioprinting of cell-laden methacrylated ge-
                 sion patterning.  Tissue Engineering Part C: Methods,   latin hydrogels. Biofabrication, vol.6(2): 024105.
                 vol.18(9): 647–657.                               http://dx.doi.org/10.1088/1758-5082/6/2/024105.
                 http://dx.doi.org/10.1089/ten.TEC.2011.0709.   47.  Chang C C, Boland E D, Williams S K, et al. 2011, Di-
              37.  Michael S, Sorg H, Peck C T, et al. 2013, Tissue engi-  rect-write bioprinting three-dimensional biohybrid  sys-
                 neered skin substitutes created by laser-assisted bio-  tems  for future regenerative therapies.  Journal  of Bio-
                 printing form skin-like structures in the dorsal skin fold   medical Materials Research Part B-Applied Biomate-
                 chamber in mice. PLoS ONE, vol.8(3): e57741       rials, vol.98B(1): 160–170.
                 http://dx.doi.org/10.1371/journal.pone.0057741.   http://dx.doi.org/10.1002/jbm.b.31831.
              38.  Soman P, Chung P H, Zhang A P, et al. 2013, Digital mi-  48.  Kim J D, Choi J S, Kim B S, et al. 2010, Piezoelectric
                 crofabrication  of user-defined 3D microstructures in   inkjet printing of polymers: stem cell patterning on po-
                 cell-laden hydrogels. Biotechnology and Bioengineering,   lymer substrates. Polymer, vol.51(10): 2147–2154.
                 vol.110(11): 3038–3047.                           http://dx.doi.org/10.1016/j.polymer.2010.03.038.
                 http://dx.doi.org/10.1002/Bit.24957.           49. Song S-J, Choi J,  Park Y-D,  et al.  2010, A
              39.  Okuda S, Inoue Y, Eiraku M, et al. 2015, Vertex dynam-  three-dimensional bioprinting system for use with a hy-
                 ics simulations of viscosity-dependent deformation dur-  drogel-based biomaterial  and printing parameter  cha-
                 ing tissue morphogenesis.  Biomechanics and Modeling   racterization. Artificial Organs, vol.34(11): 1044–1048.
                 in Mechanobiology, vol.14(2): 413–425.             http://dx.doi.org/10.1111/j.1525-1594.2010.01143.x.
                 http://dx.doi.org/10.1007/s10237-014-0613-5.   50.   Peppas N A, Bures P, Leobandung W, et al. 2000, Hy-
              40.  Duan B, Hockaday L A, Kang K H, et al. 2013, 3D bio-  drogels in pharmaceutical  formulations.  European
                 printing of heterogeneous aortic valve conduits with al-  Journal of Pharmaceutics and Biopharmaceutics, vol.50

                                        International Journal of Bioprinting (2015)–Volume 1, Issue 1      11
   10   11   12   13   14   15   16   17   18   19   20