Page 16 - IJB-1-1
P. 16
Smart hydrogels for 3D bioprinting
(1): 27–46. engineering applications. Biomedical Materials, vol.3(2):
http://dx.doi.org/10.1016/s0939-6411(00)00090-4. 025007.
51. Nguyen M K and Lee D S, 2010, Injectable Biodegrad- http://dx.doi.org/10.1088/1748-6041/3/2/025007.
able Hydrogels. Macromolecular Bioscience, vol.10(6): 63. Joo M K, Park M H, Choi B G, et al. 2009, Reverse
563–579. thermogelling biodegradable polymer aqueous solutions.
http://dx.doi.org/10.1002/mabi.200900402. Journal of Materials Chemistry, vol.19(33): 5891–5905.
52. Bushetti S S, Singh V, Raju S A, et al. 2009, Stimuli http://dx.doi.org/10.1039/b902208b.
sensitive hydrogels: a review. Indian Journal of Phar- 64. Yu L and Ding J D, 2008, Injectable hydrogels as unique
maceutical Education and Research, vol.43(3): biomedical materials. Chemical Society Reviews,
241–250. vol.37(8): 1473–1481.
53. Singh N K and Lee D S, 2014, In situ gelling pH- and http://dx.doi.org/10.1039/b713009k.
temperature-sensitive biodegradable block copolymer 65. Loh X J and Li J, 2007, Biodegradable thermosensitive
hydrogels for drug delivery. Journal of Controlled Re- copolymer hydrogels for drug delivery. Expert Opinion
lease, vol.193: 214–227. on Therapeutic Patents, vol.17(8): 965–977.
http://dx.doi.org/10.1016/j.jconrel.2014.04.056. 66. Kretlow J D, Klouda L and Mikos A G, 2007, Injectable
54. Roth E A, Xu T, Das M, et al. 2004, Inkjet printing for matrices and scaffolds for drug delivery in tissue engi-
high-throughput cell patterning. Biomaterials, neering. Advanced Drug Delivery Reviews, vol.59(4-5):
vol.25(17): 3707–3715. 263–273.
http://dx.doi.org/10.1016/j.biomaterials.2003.10.052. http://dx.doi.org/10.1016/j.addr.2007.03.013.
55. Lee V, Singh G, Trasatti J P, et al. 2014, Design and fa- 67. Geever L, Cooney C, Devine D, et al. 2008, Negative
brication of human skin by three-dimensional bioprint- temperature sensitive hydrogels in controlled drug deli-
ing. Tissue Engineering Part C: Methods, vol.20(6): very. Macromolecular Symposia, vol.266(1): 53–58.
473–484. http://dx.doi.org/10.1002/masy.200850610.
http://dx.doi.org/10.1089/ten.tec.2013.0335. 68. Cirillo G, Spataro T, Curcio M, et al. 2015, Tunable
56. Park J Y, Choi J-C, Shim J-H, et al. 2014, A compara- thermo-responsive hydrogels: synthesis, structural anal-
tive study on collagen type I and hyaluronic acid de- ysis and drug release studies. Materials Science and En-
pendent cell behavior for osteochondral tissue bioprint- gineering: C, vol.48: 499–510.
ing. Biofabrication, vol.6(3): 035004. http://dx.doi.org/10.1016/j.msec.2014.12.045.
http://dx.doi.org/10.1088/1758-5082/6/3/035004. 69. Censi R, Schuurman W, Malda J, et al. 2011, A printable
57. Koch L, Deiwick A, Schlie S, et al. 2012, Skin tissue photopolymerizable thermosensitive p(HPMAm-
generation by laser cell printing. Biotechnolgy and Bio- lactate)-PEG hydrogel for tissue engineering. Advanced
engineering, vol.109(7): 1855–1863. Functional Materials, vol.21(10): 1833–1842.
http://dx.doi.org/10.1002/bit.24455. http://dx.doi.org/10.1002/adfm.201002428.
58. Rouse J G and Van Dyke M E, 2010, A review of kera- 70. Yoon J J, Chung H J and Park T G, 2007, Photo-
tin-based biomaterials for biomedical applications. Ma- crosslinkable and biodegradable Pluronic/heparin hy-
terials, vol.3(2): 999–1014. drogels for local and sustained delivery of angiogenic
http://dx.doi.org/10.3390/ma3020999. growth factor. Journal of Biomedical Materials Re-
59. Balaji S, Kumar R, Sripriya R, et al. 2012, Characteri- search Part A, vol.83A(3): 597–605.
zation of keratin–collagen 3D scaffold for biomedical http://dx.doi.org/10.1002/jbm.a.31271.
applications. Polymers for Advanced Technologies, 71. Escobar-Chávez J J, López-Cervantes M, Naïk A, et al.
vol.23(3): 500–507. 2006, Applications of thermo-reversible pluronic F-127
http://dx.doi.org/10.1002/pat.1905. gels in pharmaceutical formulations. Journal of Phar-
60. Szeverenyi I, Cassidy A J, Chung C W, et al. 2008, The macy and Pharmaceutical Sciences, vol.9(3): 339–358.
human intermediate filament database: comprehensive 72. Müller M, Becher J, Schnabelrauch M, et al. 2013,
information on a gene family involved in many human Printing thermoresponsive reverse molds for the crea-
diseases. Human Mutation, vol.29(3): 351–360. tion of patterned two-component hydrogels for 3D cell
http://dx.doi.org/10.1002/humu.20652. culture. Journal of Visualized Experiments, vol.2013(77):
61. Makarem R and Humphries M J, 1991, LDV: a novel e50632.
cell adhesion motif recognized by the integrin α4β1. http://dx.doi.org/10.3791/50632.
Biochemical Society Transactions, vol.19(4): 380S. 73. Kolesky D B, Truby R L, Gladman A S, et al. 2014, 3D
62. Verma V, Verma P, Ray P, et al. 2008, Preparation of bioprinting of vascularized, heterogeneous cell-laden
scaffolds from human hair proteins for tissue- tissue constructs. Advanced Materials, vol.26(19):
12 International Journal of Bioprinting (2015)–Volume 1, Issue 1

