Page 16 - IJB-1-1
P. 16

Smart hydrogels for 3D bioprinting

                 (1): 27–46.                                        engineering applications. Biomedical Materials, vol.3(2):
                 http://dx.doi.org/10.1016/s0939-6411(00)00090-4.   025007.
              51.   Nguyen M K and Lee D S, 2010, Injectable Biodegrad-  http://dx.doi.org/10.1088/1748-6041/3/2/025007.
                 able Hydrogels. Macromolecular Bioscience, vol.10(6):   63.   Joo  M K,  Park M H, Choi B G,  et al.  2009, Reverse
                 563–579.                                           thermogelling biodegradable polymer aqueous solutions.
                 http://dx.doi.org/10.1002/mabi.200900402.          Journal of Materials Chemistry, vol.19(33): 5891–5905.
              52.   Bushetti S S, Singh V, Raju S A,  et al.  2009, Stimuli   http://dx.doi.org/10.1039/b902208b.
                 sensitive  hydrogels:  a  review.  Indian Journal of Phar-  64.   Yu L and Ding J D, 2008, Injectable hydrogels as unique
                 maceutical Education  and Research, vol.43(3):     biomedical materials.  Chemical  Society  Reviews,
                 241–250.                                           vol.37(8): 1473–1481.
              53.   Singh N K and Lee D S, 2014, In situ gelling pH- and   http://dx.doi.org/10.1039/b713009k.
                 temperature-sensitive biodegradable block copolymer   65.   Loh X J and Li J, 2007, Biodegradable thermosensitive
                 hydrogels for drug delivery. Journal of Controlled Re-  copolymer hydrogels for drug delivery. Expert Opinion
                 lease, vol.193: 214–227.                           on Therapeutic Patents, vol.17(8): 965–977.
                 http://dx.doi.org/10.1016/j.jconrel.2014.04.056.   66.   Kretlow J D, Klouda L and Mikos A G, 2007, Injectable
              54.   Roth E A, Xu T, Das M, et al. 2004, Inkjet printing for   matrices and scaffolds for drug delivery in tissue engi-
                 high-throughput  cell  patterning.  Biomaterials,   neering. Advanced Drug Delivery Reviews, vol.59(4-5):
                 vol.25(17): 3707–3715.                             263–273.
                 http://dx.doi.org/10.1016/j.biomaterials.2003.10.052.   http://dx.doi.org/10.1016/j.addr.2007.03.013.
              55.   Lee V, Singh G, Trasatti J P, et al. 2014, Design and fa-  67.   Geever L, Cooney C, Devine D, et al. 2008, Negative
                 brication of human skin by three-dimensional bioprint-  temperature sensitive hydrogels in controlled drug deli-
                 ing.  Tissue Engineering Part C:  Methods, vol.20(6):   very. Macromolecular Symposia, vol.266(1): 53–58.
                 473–484.                                           http://dx.doi.org/10.1002/masy.200850610.
                 http://dx.doi.org/10.1089/ten.tec.2013.0335.   68.   Cirillo G, Spataro T, Curcio M,  et al.  2015, Tunable
              56.   Park J Y, Choi J-C, Shim J-H, et al. 2014, A compara-  thermo-responsive hydrogels: synthesis, structural anal-
                 tive study on collagen type I and  hyaluronic acid de-  ysis and drug release studies. Materials Science and En-
                 pendent cell behavior for osteochondral tissue bioprint-  gineering: C, vol.48: 499–510.
                 ing. Biofabrication, vol.6(3): 035004.             http://dx.doi.org/10.1016/j.msec.2014.12.045.
                 http://dx.doi.org/10.1088/1758-5082/6/3/035004.   69.   Censi R, Schuurman W, Malda J, et al. 2011, A printable
              57.   Koch L, Deiwick A, Schlie S, et al. 2012, Skin tissue   photopolymerizable   thermosensitive  p(HPMAm-
                 generation by laser cell printing. Biotechnolgy and Bio-  lactate)-PEG hydrogel for tissue engineering. Advanced
                 engineering, vol.109(7): 1855–1863.                Functional Materials, vol.21(10): 1833–1842.
                 http://dx.doi.org/10.1002/bit.24455.               http://dx.doi.org/10.1002/adfm.201002428.
              58.   Rouse J G and Van Dyke M E, 2010, A review of kera-  70.   Yoon J J, Chung H J  and  Park  T  G, 2007, Photo-
                 tin-based biomaterials for biomedical applications. Ma-  crosslinkable and biodegradable  Pluronic/heparin hy-
                 terials, vol.3(2): 999–1014.                       drogels for local and sustained  delivery of angiogenic
                 http://dx.doi.org/10.3390/ma3020999.               growth factor.  Journal of Biomedical Materials Re-
              59.    Balaji S, Kumar R, Sripriya R, et al. 2012, Characteri-  search Part A, vol.83A(3): 597–605.
                 zation of  keratin–collagen  3D scaffold for biomedical   http://dx.doi.org/10.1002/jbm.a.31271.
                 applications.  Polymers  for Advanced Technologies,   71.   Escobar-Chávez J J, López-Cervantes M, Naïk A, et al.
                 vol.23(3): 500–507.                                2006, Applications of thermo-reversible pluronic F-127
                 http://dx.doi.org/10.1002/pat.1905.                gels in pharmaceutical  formulations.  Journal of Phar-
              60.   Szeverenyi I, Cassidy A J, Chung C W, et al. 2008, The   macy and Pharmaceutical Sciences, vol.9(3): 339–358.
                 human intermediate filament database:  comprehensive   72.   Müller M,  Becher  J, Schnabelrauch M,  et al.  2013,
                 information on a gene family involved in many human   Printing  thermoresponsive  reverse  molds for the  crea-
                 diseases. Human Mutation, vol.29(3): 351–360.      tion of patterned two-component hydrogels for 3D cell
                 http://dx.doi.org/10.1002/humu.20652.              culture. Journal of Visualized Experiments, vol.2013(77):
              61.   Makarem R and Humphries M J, 1991, LDV: a  novel   e50632.
                 cell  adhesion  motif  recognized  by  the  integrin  α4β1.   http://dx.doi.org/10.3791/50632.
                 Biochemical Society Transactions, vol.19(4): 380S.   73.   Kolesky D B, Truby R L, Gladman A S, et al. 2014, 3D
              62.   Verma V,  Verma P, Ray P,  et al.  2008, Preparation  of   bioprinting of  vascularized,  heterogeneous  cell-laden
                 scaffolds from  human hair proteins for tissue-          tissue  constructs.  Advanced Materials, vol.26(19):

            12                          International Journal of Bioprinting (2015)–Volume 1, Issue 1
   11   12   13   14   15   16   17   18   19   20   21