Page 18 - IJB-1-1
P. 18

Smart hydrogels for 3D bioprinting

                 175–180.                                       101.  Kazimierska-Drobny K, El Fray M and Kaczmarek M,
                 http://dx.doi.org/10.1016/j.jmmm.2014.10.139.      2015, Determination of mechanical and hydraulic prop-
              95.  Mahdavinia G R and Etemadi H, 2014, In situ synthesis   erties of PVA hydrogels.  Materials Science  &  Engi-
                 of  magnetic CaraPVA IPN nanocomposite hydrogels   neering C-Materials for Biological Applications, vol.48:
                 and controlled drug release. Materials Science & Engi-  48–54.
                 neering C-Materials for Biological Applications, vol.45:   http://dx.doi.org/10.1016/j.msec.2014.11.034.
                 250–260.                                       102.  Credi C, Biella S, De Marco C, et al. 2014, Fine tuning
                 http://dx.doi.org/10.1016/j.msec.2014.09.023.      and measurement of mechanical properties of cros-
              96.  Szabó D, Czakó-Nagy I, Zrínyi M, et al. 2000, Magnetic   slinked hyaluronic acid hydrogels as biomimetic scaf-
                 and mössbauer studies of magnetite-loaded polyvinyl   fold coating in regenerative  medicine.  Journal of  the
                 alcohol hydrogels.  Journal  of Colloid and  Interface   Mechanical Behavior of Biomedical Materials,  vol.29:
                 Science, vol. 221(2): 166–172.                     309–316.
                 http://dx.doi.org/10.1006/jcis.1999.6572.          http://dx.doi.org/10.1016/j.jmbbm.2013.09.025.
              97.  Li Y H, Huang G Y, Zhang X H, et al. 2013, Magnetic   103.  Melzak K A, Mateescu A, Toca-Herrera J L, et al. 2012,
                 hydrogels and  their potential biomedical applications.   Simultaneous measurement of mechanical and surface
                 Advanced Functional Materials, Vol.23(6): 660–672.   properties in thermoresponsive, anchored hydrogel films.
                 http://dx.doi.org/10.1002/adfm.201201708.          Langmuir, vol.28(35): 12871–12878.
              98.  Ng S S, Li C and Chan V, 2011; Experimental and nu-  http://dx.doi.org/10.1021/la3019666.
                 merical determination of cellular traction force on po-  104.  Kesti M, Müeller M, Becher J, et al. 2015, A versatile
                 lymeric hydrogels. Inerface Focus, vol.1: 777–791.   bioink for three-dimensional printing  of cellular scaf-
                 http://dx.doi.org/10.1098/rsfs.2011.0036.          folds based on thermally and photo-triggered tandem
              99.  Manzano S,  Moreno-Loshuertos R,  Doblaré M,  et al.   gelation. Acta Biomaterialia, vol.11: 162–172.
                 2015, Structural biology response of a collagen hydrogel   http://dx.doi.org/10.1016/j.actbio.2014.09.033.
                 synthetic e10.1007xtracellular  matrix with embedded   105.  Stoychev G,  Puretskiy N  and  Ionov L,  2011,
                 human fibroblast: computational and experimental   Self-folding all-polymer thermoresponsive microcap-
                 analysis. Medical & Biological Engineering & Compu-  sules. Soft Matter, vol.2011(7): 3277–3279.
                 ting, vol.53: 721–735.                             http://dx.doi.org/10.1039/C1SM05109A.
                 http://dx.doi.org/10.1007/s11517-015-1277-8.   106.  Jamal M, Kadam S S, Xiao R, et al. 2013, Bio-origami
              100.  Zhang H,  Dai S,  Bi J  X,  et al. 2011,  Biomimetic   hydrogel scaffolds composed of photocrosslinked PEG
                 three-dimensional microenvironment for controlling   bilayers.  Advanced Healthcare Materials,  vol.2(8):
                 stem cell fate. Interface Focus, vol.2011(1): 792–803.   1142–1150.
                 http://dx.doi.org/10.1098/rsfs.2011.0035.          http://dx.doi.org/10.1002/adhm.201200458.
































            14                          International Journal of Bioprinting (2015)–Volume 1, Issue 1
   13   14   15   16   17   18   19   20   21   22   23