Page 14 - IJB-1-1
P. 14

Smart hydrogels for 3D bioprinting

              7.  Castilho M, Moseke C, Ewald A, et al. 2014, Direct 3D   http://dx.doi.org/10.1016/j.eurpolymj.2009.04.033.
                 powder printing of biphasic calcium phosphate scaffolds   19.  Syrett J A, Becer C R and Haddleton D M, 2010,
                 for substitution of complex bone defects. Biofabrication,   Self-healing and self-mendable polymers.  Polymer
                 vol.6(1): 015006.                                 Chemistry, vol.1(7): 978–987.
                 http://dx.doi.org/ 10.1088/1758-5082/6/1/015006.   http://dx.doi.org/10.1039/c0py00104j.
              8.  Cox S C, Thornby J A, Gibbons G J,  et al. 2015, 3D   20.  Hoffman A S, 2013, Stimuli-responsive polymers: Bio-
                 printing of porous hydroxyapatite scaffolds intended for   medical applications and challenges for clinical transla-
                 use in bone tissue engineering applications.  Materials   tion.  Advanced Drug Delivery Reviews, vol.65(1):
                 Science  & Engineering C-Materials for Biological Ap-  10–16.
                 plications, vol.47: 237–247.                      http://dx.doi.org/10.1016/j.addr.2012.11.004.
                 http://dx.doi.org/10.1016/j.msec.2014.11.024.   21.  Jochum F  D and Theato  P,  2013, Temperature-  and
              9.  Tasoglu S and Demirci U, 2013, Bioprinting for stem   light-responsive smart polymer materials. Chemical So-
                 cell research. Trends in Biotechnology, vol.31: 10–19.   ciety Reviews, vol.42(17): 7468–7483.
                 http://dx.doi.org/10.1016/j.tibtech.2012.10.005.   http://dx.doi.org/10.1039/c2cs35191a.
              10.  Wang C Y, Tang Z Y, Zhao  Y,  et al. 2014,  Three-       22.  Lee J, Cuddihy M J and Kotov N A, 2008, Three-
                 dimensional in vitro cancer models: a short review. Bio-  dimensional cell culture matrices: state of the art. Tissue
                 fabrication, vol.6(2): 022001.                    Engineering Part B: Reviews, vol.14(1): 61–86.
                 http://dx.doi.org/10.1088/1758-5082/6/2/022001.   http://dx.doi.org/10.1089/teb.2007.0150.
              11.  Chang R, Nam J and Sun W, 2008, Direct cell writing of   23.  Adachi T, Osako Y, Tanaka M, et al. 2006, Framework
                 3D microorgan for in vitro pharmacokinetic model. Tis-  for optimal design of porous scaffold microstructure by
                 sue Engineering Part C: Methods, vol.14: 157–166.   computational simulation of bone regeneration. Bioma-
                 http://dx.doi.org/10.1089/ten.tec.2007.0392.      terials, vol.27(21): 3964–3972.
              12.  Horváth L, Umehara Y, Jud C, et al. 2015, Engineering   http://dx.doi.org/10.1016/j.biomaterials.2006.02.039.
                 an in vitro air-blood barrier by 3D bioprinting. Scientific   24.  Wu S L, Liu X M, Yeung K W K, et al. 2014, Biomi-
                 Reports, vol.5.                                   metic porous scaffolds for bone tissue engineering. Ma-
                 http://dx.doi.org/10.1038/srep07974.              terials Science and Engineering: R: Reports, vol.80: 1–
              13.  Wang S, Wang Z X, Foo S E M, et al. 2015, Culturing   36.
                 Fibroblasts in 3D human hair keratin hydrogels. Acs Ap-  http://dx.doi.org/10.1016/j.mser.2014.04.001.
                 plied Materials & Interfaces, vol.7(9): 5187–5198.   25.  Hannachi I E, Itoga K, Kumashiro Y, et al. 2009, Fabri-
                 http://dx.doi.org/10.1021/acsami.5b00854.         cation of transferable  micropatterned-co-cultured cell
              14.  Wang S, Taraballi F, Tan L P, et al. 2012, Human keratin   sheets with  microcontact printing.  Biomaterials, vol.30
                 hydrogels support fibroblast attachment and proliferation   (29): 5427–5432.
                 in vitro. Cell and Tissue Research, vol.347(3): 795–802.   http://dx.doi.org/10.1016/j.biomaterials.2009.06.033.
                 http://dx.doi.org/10.1007/s00441-011-1295-2.   26.  Cohen D L,  Malone E, Lipson  H,  et al.  2006, Direct
              15.  Galler K M, Hartgerink J D, Cavender A C, et al. 2012,   freeform  fabrication  of seeded  hydrogels in arbitrary
                 A customized self-assembling peptide hydrogel for den-  geometries. Tissue Engineering, vol.12(5): 1325–1335.
                 tal  pulp  tissue  engineering.  Tissue Engineering Part A,   http://dx.doi.org/10.1089/ten.2006.12.1325.
                 vol.18(1-2): 176–184.                          27.  Smith C M, Stone A L,  Parkhill R L,  et al.  2004,
                 http://dx.doi.org/10.1089/ten.tea.2011.0222.      Three-dimensional bioassembly tool for generating via-
              16.  Kundu B and Kundu  S  C, 2012,  Silk seri-      ble tissue-engineered constructs.  Tissue Engineering,
                 cin/polyacrylamide in situ forming hydrogels for dermal   vol.10(9-10): 1566–1576.
                 reconstruction. Biomaterials, vol.33(30): 7456–7467.   http://dx.doi.org/10.1089/ten.2004.10.1566.
                 http://dx.doi.org/10.1016/j.biomaterials.2012.06.091.   28.  Smith C M, Christian J J, Warren W L, et al. 2007, Cha-
              17.  Rustad K C, Wong  V W, Sorkin M,  et al.  2012, En-  racterizing environmental factors that impact the viabili-
                 hancement of mesenchymal stem cell angiogenic capac-  ty of tissue-engineered constructs fabricated by a di-
                 ity and stemness by a biomimetic hydrogel scaffold.   rect-write bioassembly tool.  Tissue Engineering,
                 Biomaterials, vol.33(1): 80–90.                   vol.13(2): 373–383.
                 http://dx.doi.org/10.1016/j.biomaterials.2011.09.041.   http://dx.doi.org/10.1089/ten.2006.0101.
              18.  Chang C Y, Duan B, Cai J, et al. 2010, Superabsorbent   29.  Wang X H, Yan Y N, Pan Y Q, et al. 2006, Generation of
                 hydrogels based on cellulose for smart swelling and con-  three-dimensional hepatocyte/gelatin structures with
                 trollable delivery. European Polymer Journal, vol.46(1):   rapid prototyping system. Tissue Engineering, vol.12(1):
                 92–100.                                           83–90.

            10                          International Journal of Bioprinting (2015)–Volume 1, Issue 1
   9   10   11   12   13   14   15   16   17   18   19