Page 14 - IJB-1-1
P. 14
Smart hydrogels for 3D bioprinting
7. Castilho M, Moseke C, Ewald A, et al. 2014, Direct 3D http://dx.doi.org/10.1016/j.eurpolymj.2009.04.033.
powder printing of biphasic calcium phosphate scaffolds 19. Syrett J A, Becer C R and Haddleton D M, 2010,
for substitution of complex bone defects. Biofabrication, Self-healing and self-mendable polymers. Polymer
vol.6(1): 015006. Chemistry, vol.1(7): 978–987.
http://dx.doi.org/ 10.1088/1758-5082/6/1/015006. http://dx.doi.org/10.1039/c0py00104j.
8. Cox S C, Thornby J A, Gibbons G J, et al. 2015, 3D 20. Hoffman A S, 2013, Stimuli-responsive polymers: Bio-
printing of porous hydroxyapatite scaffolds intended for medical applications and challenges for clinical transla-
use in bone tissue engineering applications. Materials tion. Advanced Drug Delivery Reviews, vol.65(1):
Science & Engineering C-Materials for Biological Ap- 10–16.
plications, vol.47: 237–247. http://dx.doi.org/10.1016/j.addr.2012.11.004.
http://dx.doi.org/10.1016/j.msec.2014.11.024. 21. Jochum F D and Theato P, 2013, Temperature- and
9. Tasoglu S and Demirci U, 2013, Bioprinting for stem light-responsive smart polymer materials. Chemical So-
cell research. Trends in Biotechnology, vol.31: 10–19. ciety Reviews, vol.42(17): 7468–7483.
http://dx.doi.org/10.1016/j.tibtech.2012.10.005. http://dx.doi.org/10.1039/c2cs35191a.
10. Wang C Y, Tang Z Y, Zhao Y, et al. 2014, Three- 22. Lee J, Cuddihy M J and Kotov N A, 2008, Three-
dimensional in vitro cancer models: a short review. Bio- dimensional cell culture matrices: state of the art. Tissue
fabrication, vol.6(2): 022001. Engineering Part B: Reviews, vol.14(1): 61–86.
http://dx.doi.org/10.1088/1758-5082/6/2/022001. http://dx.doi.org/10.1089/teb.2007.0150.
11. Chang R, Nam J and Sun W, 2008, Direct cell writing of 23. Adachi T, Osako Y, Tanaka M, et al. 2006, Framework
3D microorgan for in vitro pharmacokinetic model. Tis- for optimal design of porous scaffold microstructure by
sue Engineering Part C: Methods, vol.14: 157–166. computational simulation of bone regeneration. Bioma-
http://dx.doi.org/10.1089/ten.tec.2007.0392. terials, vol.27(21): 3964–3972.
12. Horváth L, Umehara Y, Jud C, et al. 2015, Engineering http://dx.doi.org/10.1016/j.biomaterials.2006.02.039.
an in vitro air-blood barrier by 3D bioprinting. Scientific 24. Wu S L, Liu X M, Yeung K W K, et al. 2014, Biomi-
Reports, vol.5. metic porous scaffolds for bone tissue engineering. Ma-
http://dx.doi.org/10.1038/srep07974. terials Science and Engineering: R: Reports, vol.80: 1–
13. Wang S, Wang Z X, Foo S E M, et al. 2015, Culturing 36.
Fibroblasts in 3D human hair keratin hydrogels. Acs Ap- http://dx.doi.org/10.1016/j.mser.2014.04.001.
plied Materials & Interfaces, vol.7(9): 5187–5198. 25. Hannachi I E, Itoga K, Kumashiro Y, et al. 2009, Fabri-
http://dx.doi.org/10.1021/acsami.5b00854. cation of transferable micropatterned-co-cultured cell
14. Wang S, Taraballi F, Tan L P, et al. 2012, Human keratin sheets with microcontact printing. Biomaterials, vol.30
hydrogels support fibroblast attachment and proliferation (29): 5427–5432.
in vitro. Cell and Tissue Research, vol.347(3): 795–802. http://dx.doi.org/10.1016/j.biomaterials.2009.06.033.
http://dx.doi.org/10.1007/s00441-011-1295-2. 26. Cohen D L, Malone E, Lipson H, et al. 2006, Direct
15. Galler K M, Hartgerink J D, Cavender A C, et al. 2012, freeform fabrication of seeded hydrogels in arbitrary
A customized self-assembling peptide hydrogel for den- geometries. Tissue Engineering, vol.12(5): 1325–1335.
tal pulp tissue engineering. Tissue Engineering Part A, http://dx.doi.org/10.1089/ten.2006.12.1325.
vol.18(1-2): 176–184. 27. Smith C M, Stone A L, Parkhill R L, et al. 2004,
http://dx.doi.org/10.1089/ten.tea.2011.0222. Three-dimensional bioassembly tool for generating via-
16. Kundu B and Kundu S C, 2012, Silk seri- ble tissue-engineered constructs. Tissue Engineering,
cin/polyacrylamide in situ forming hydrogels for dermal vol.10(9-10): 1566–1576.
reconstruction. Biomaterials, vol.33(30): 7456–7467. http://dx.doi.org/10.1089/ten.2004.10.1566.
http://dx.doi.org/10.1016/j.biomaterials.2012.06.091. 28. Smith C M, Christian J J, Warren W L, et al. 2007, Cha-
17. Rustad K C, Wong V W, Sorkin M, et al. 2012, En- racterizing environmental factors that impact the viabili-
hancement of mesenchymal stem cell angiogenic capac- ty of tissue-engineered constructs fabricated by a di-
ity and stemness by a biomimetic hydrogel scaffold. rect-write bioassembly tool. Tissue Engineering,
Biomaterials, vol.33(1): 80–90. vol.13(2): 373–383.
http://dx.doi.org/10.1016/j.biomaterials.2011.09.041. http://dx.doi.org/10.1089/ten.2006.0101.
18. Chang C Y, Duan B, Cai J, et al. 2010, Superabsorbent 29. Wang X H, Yan Y N, Pan Y Q, et al. 2006, Generation of
hydrogels based on cellulose for smart swelling and con- three-dimensional hepatocyte/gelatin structures with
trollable delivery. European Polymer Journal, vol.46(1): rapid prototyping system. Tissue Engineering, vol.12(1):
92–100. 83–90.
10 International Journal of Bioprinting (2015)–Volume 1, Issue 1

