Page 17 - IJB-1-1
P. 17
Shuai Wang, Jia Min Lee and Wai Yee Yeong
3124–3130. tential dynamic tool for biomedical applications. Jour-
http://dx.doi.org/10.1002/adma.201305506. nal of Applied Polymer Science, vol.131(23): app.41195
74. Schmedlen R H, Masters K S and West J L, 2002, Pho- http://dx.doi.org/10.1002/app.41195.
tocrosslinkable polyvinyl alcohol hydrogels that can be 85. Attaran A, Brummund J and Wallmersperger T, 2015,
modified with cell adhesion peptides for use in tissue Modeling and simulation of the bending behavior of
engineering. Biomaterials, vol.23(22): 4325–4332. electrically-stimulated cantilevered hydrogels. Smart
http://dx.doi.org/10.1016/S0142-9612(02)00177-1. Materials and Structures, vol.24: 035021
75. Ifkovits J L and Burdick J A, 2007, Review: photopo- http://dx.doi.org/10.1088/0964-1726/24/3/035021.
lymerizable and degradable biomaterials for tissue en- 86. Boruah M, Mili M, Sharma S, et al. 2015, Synthesis and
gineering applications. Tissue Engineering, vol.13(10): evaluation of swelling kinetics of electric field respon-
2369–2385. sive poly(vinyl alcohol)-g-polyacrylic acid/OMNT na-
http://dx.doi.org/10.1089/ten.2007.0093. nocomposite hydrogels. Polymer Composites, vol.36(1):
76. Nguyen K T and West J L, 2002, Photopolymerizable 34–41.
hydrogels for tissue engineering applications. Biomate- http://dx.doi.org/10.1002/pc.22909.
rials, vol.23(22): 4307–4314. 87. Taghizadeh B, Taranejoo S, Monemian S A, et al. 2015,
http://dx.doi.org/10.1016/s0142-9612(02)00175-8. Classification of stimuli-responsive polymers as anti-
77. Liu V A and Bhatia S N, 2002, Three-dimensional pho- cancer drug delivery systems. Drug Delivery, vol.22(2):
topatterning of hydrogels containing living cells. Bio- 145–155.
medical Microdevices, vol.4(4): 257–266. http://dx.doi.org/10.3109/10717544.2014.887157.
http://dx.doi.org/10.1023/a:1020932105236. 88. Zhang H M, Li J J, Cui H T, et al. 2015, Forward osmo-
78. Nichol J W, Koshy S T, Bae H, et al. 2010, Cell-laden sis using electric-responsive polymer hydrogels as draw
microengineered gelatin methacrylate hydrogels. Bio- agents: Influence of freezing-thawing cycles, voltage,
materials, vol.31(21): 5536–5544. feed solutions on process performance. Chemical Engi-
http://dx.doi.org/10.1016/j.biomaterials.2010.03.064. neering Journal, vol.259: 814–819.
79. Torgersen J, Qin X H, Li Z Q, et al. 2013, Hydrogels for http://dx.doi.org/10.1016/j.cej.2014.08.065.
two-photon polymerization: a toolbox for mimicking the 89. Kulkarni R V and Biswanath S A, 2007, Electrically
extracellular matrix. Advanced Functional Materials, responsive smart hydrogels in drug delivery: a review.
vol.23(36): 4542–4554. Journal of Applied Biomaterials & Biomechanics,
http://dx.doi.org/10.1002/adfm.201203880. vol.5(3): 125–139.
80. Skardal A, Zhang J X, McCoard L, et al. 2010, Photo- 90. Sawahata K, Hara M, Yasunaga H, et al. 1990, Electri-
crosslinkable hyaluronan-gelatin hydrogels for two-step cally controlled drug delivery system using polyelectro-
bioprinting. Tissue Engineering Part A, vol.16(8): lyte gels. Journal of Controlled Release, vol.14(3):
2675–2685. 253–262.
http://dx.doi.org/10.1089/ten.tea.2009.0798. http://dx.doi.org/10.1016/0168-3659(90)90165-P.
81. Xiao W Q, He J K, Nichol J W, et al. 2011, Synthesis 91. Giani G, Fedi S and Barbucci R, 2012, Hybrid magnetic
and characterization of photocrosslinkable gelatin and hydrogel: A potential system for controlled drug deli-
silk fibroin interpenetrating polymer network hydrogels. very by means of alternating magnetic fields. Polymers,
Acta Biomaterialia, vol.7(6): 2384–2393. vol.4(2): 1157–1169.
http://dx.doi.org/10.1016/j.actbio.2011.01.016. http://dx.doi.org/ 10.3390/polym4021157.
82. Shin H, Olsen B D and Khademhosseini A, 2012, The 92. Asa'di S, Frounchi M and Dadbin S, 2013, Nano-
mechanical properties and cytotoxicity of cell-laden magnetic poly (vinyl alcohol) hydrogels. Advanced Me-
double-network hydrogels based on photocrosslinkable terials Research, vol.829: 539–543.
gelatin and gellan gum biomacromolecules. Biomate- http://dx.doi.org/10.4028/www.scientific.net/AMR.829.
rials, vol.33(11): 3143–3152. 539.
http://dx.doi.org/10.1016/j.biomaterials.2011.12.050. 93. Li Z Q, Shen J F, Ma H W, et al. 2012, Preparation and
83. Jackson N and Stam F, 2015, Optimization of electrical characterization of sodium alginate/poly(N-sopropy-
stimulation parameters for electro-responsive hydrogels acrylamide)/clay semi-IPN magnetic hydrogels. Poly-
for biomedical applications. Journal of Applied Polymer mer Bulletin, vol.68: 1153–1169.
Science, vol.132(12): app.41687. http://dx.doi.org/10.1007/s00289-011-0671-0.
http://dx.doi.org/10.1002/app.41687. 94. Tóth I Y, Veress G, Szekeres M, et al. 2015, Magnetic
84. Adesanya K, Vanderleyden E, Embrechts A, et al. 2014, hyaluronate hydrogels: preparation and characterization.
Properties of electrically responsive hydrogels as a po- Journal of Magnetism and Magnetic Materials, vol.380:
International Journal of Bioprinting (2015)–Volume 1, Issue 1 13

