Page 52 - IJB-1-1
P. 52
Bioprinting with pre-cultured cellular constructs towards tissue engineering of hierarchical tissues
dothelial cells. Arteriosclerosis Thrombosis, and Vascu- 1932.
lar Biology, vol.30(7): 1300–1306. http://dx.doi.org/10.1016/S0142-9612(00)00379-3.
http://dx.doi.org/10.1161/ATVBAHA.109.198994. 28. Klebe R J, 1988, Cytoscribing: a method for microposi-
17. Kitano H, Tada S, Mori T, et al. 2005, Correlation be- tioning cells and the construction of two- and
tween the structure of water in the vicinity of carbox- three-dimensional synthetic tissues. Experimental Cell
ybetaine polymers and their blood-compatibility, Lang- Research, 179(2): 362–373.
muir, vol.21(25): 11932–11940. http://dx.doi.org/10.1016/0014-4827(88)90275-3.
http://dx.doi.org/10.1021/la0515571. 29. Campbell P G, Miller E D, Fisher G W, et al. 2005, En-
18. Tada S, Inaba C, Mizukami K, et al. 2009, Anti- gineered spatial patterns of FGF-2 immobilized on fi-
biofouling properties of polymers with a carboxybetaine brin direct cell organization. Biomaterials, vol.26(33):
moiety. Macromolecular Bioscience, vol.9(1): 63–70. 6762–6770.
http://dx.doi.org/10.1002/mabi.200800150. http://dx.doi.org/10.1016/j.biomaterials.2005.04.032.
19. Kitano H, Kondo T, Kamada T, et al. 2011, An- 30. Yang S F, Leong K-F, Du Z H, et al. 2002, The design of
ti-biofouling properties of an amphoteric polymer brush scaffolds for use in tissue engineering. Part II. Rapid
constructed on a glass substrate. Colloids Surface B: prototyping techniques. Tissue Engineering, vol.8(1):
Biointerfaces, vol.88(1): 455–462. 1–11.
http://dx.doi.org/10.1016/j.colsurfb.2011.07.029. http://dx.doi.org/10.1089/107632702753503009.
20. Kitano H, Suzuki H, Kondo T, et al. 2011, Image print- 31. Landers R, Hübner U, Schmelzeisen R, et al. 2002,
ing on the surface of anti-biofouling zwitterionic poly- Rapid prototyping of scaffolds derived from thermore-
mer brushes by ion beam irradiation. Macromolecular versible hydrogels and tailored for applications in tissue
Bioscience, vol.11(4): 557–564 engineering. Biomaterials, vol.23(23): 4437–4447.
http://dx.doi.org/10.1002/mabi.201000437. http://dx.doi.org/10.1016/S0142-9612(02)00139-4.
21. Nakamura M, Kobayashi A, Takagi F, et al. 2005, Bio- 32. Griffith L G and Naughton G, 2002, Tissue engineering-
compatible inkjet printing technique for designed seed- current challenges and expanding opportunities. Science,
ing of individual living cells. Tissue Engineering, vol.295(5557): 1009–1014.
vol.11(11-12): 1658–1666. http://dx.doi.org/10.1126/science.1069210.
http://dx.doi.org/10.1089/ten.2005.11.1658. 33. Wu P K and Ringeisen B R, 2010, Development of hu-
22. Nishiyama Y, Nakamura M, Henmi C, et al. 2009, De- man umbilical vein endothelial cell (HUVEC) and hu-
velopment of a three-dimensional bioprinter: construc- man umbilical vein smooth muscle cell (HUVSMC)
tion of cell supporting structures using hydrogel and branch/stem structures on hydrogel layers via biological
state-of-the-art inkjet technology. Journal of Biome- laser printing (BioLP). Biofabrication, vol.2(1): 014111.
chanical Engineering, vol.131(3): 035001. http://dx.doi.org/10.1088/1758-5082/2/1/014111.
http://dx.doi.org/10.1115/1.3002759. 34. Okano T, Satoh S, Oka T, et al. 1997, Tissue engineer-
23. Nakamura M, 2010, Reconstruction of biological ing of skeletal muscle highly dense, highly oriented hy-
three-dimensional tissues: bioprinting and biofabrication brid muscular tissues biomimicking native tissues.
using inkjet technology, in Cell and Organ Printing. ASAIO Journal, vol.43(5): M749–M753.
Springer, Netherlands, 23–33. 35. Kanda K and Matsuda T, 1994, Mechanical stress-indu-
http://dx.doi.org/10.1007/978-90-481-9145-1_2. ced orientation and ultrastructural change of smooth
24. Arai K, Iwanaga S, Toda H, et al. 2011, Three-dimen- muscle cells cultured in three-dimensional collagen lat-
sional inkjet biofabrication based on designed images. tices. Cell Transplant, vol.3(6): 481–492.
Biofabrication, vol.3(3): 034113. 36. Zimmermann W H, Schneiderbanger K, Schubert P, et
http://dx.doi.org/10.1088/1758-5082/3/3/034113. al. 2002, Tissue engineering of a differentiated cardiac
25. Matsuda T, Inoue K and Sugawara T, 1990, Develop- muscle construct. Circulation Research, vol.90(2): 223–
ment of micropatterning technology for cultured cells. 230.
ASAIO Transactions, vol. 36(3): M559–M562. http://dx.doi.org/10.1161/hh0202.103644.
26. Iwanaga S, Akiyama Y, Kikuchi A, et al. 2005, Fabrica- 37. Eschenhagen T, Didié M, Heubach J, et al. 2002, Car-
tion of a cell array on ultrathin hydrophilic polymer gels diac tissue engineering. Transplant Immunology,
utilising electron beam irradiation and UV excimer laser vol.9(2-4): 315–321.
ablation. Biomaterials, vol.26(26): 5395–5404. http://dx.doi.org/10.1016/S0966-3274(02)00011-4.
http://dx.doi.org/10.1016/j.biomaterials.2005.01.021. 38. Eschenhagen T and Zimmermann W H, 2005, Engi-
27. Lauer L, Klein C and Offenhausser A, 2001, Spot com- neering myocardial tissue. Circulation Research,
pliant neuronal networks by structure optimized mi- vol.97(12): 1220–1231.
cro-contact printing. Biomaterials, vol.22(13): 1925– http://dx.doi.org/10.1161/01.RES.0000196562.73231.7d
48 International Journal of Bioprinting (2015)–Volume 1, Issue 1

