Page 52 - IJB-1-1
P. 52

Bioprinting with pre-cultured cellular constructs towards tissue engineering of hierarchical tissues

                 dothelial cells. Arteriosclerosis Thrombosis, and Vascu-  1932.
                 lar Biology, vol.30(7): 1300–1306.                 http://dx.doi.org/10.1016/S0142-9612(00)00379-3.
                 http://dx.doi.org/10.1161/ATVBAHA.109.198994.   28.  Klebe R J, 1988, Cytoscribing: a method for microposi-
              17.  Kitano H, Tada S, Mori T, et al. 2005, Correlation be-  tioning cells and the construction of two-  and
                 tween the structure of  water in the vicinity of  carbox-  three-dimensional synthetic tissues.  Experimental Cell
                 ybetaine polymers and their blood-compatibility, Lang-  Research, 179(2): 362–373.
                 muir, vol.21(25): 11932–11940.                     http://dx.doi.org/10.1016/0014-4827(88)90275-3.
                 http://dx.doi.org/10.1021/la0515571.           29.  Campbell P G, Miller E D, Fisher G W, et al. 2005, En-
              18.  Tada S, Inaba C, Mizukami  K,  et al. 2009,  Anti-       gineered spatial  patterns of FGF-2 immobilized on fi-
                 biofouling properties of polymers with a carboxybetaine   brin direct cell organization.  Biomaterials,  vol.26(33):
                 moiety. Macromolecular Bioscience, vol.9(1): 63–70.   6762–6770.
                 http://dx.doi.org/10.1002/mabi.200800150.          http://dx.doi.org/10.1016/j.biomaterials.2005.04.032.
              19.  Kitano H, Kondo T, Kamada T,  et al. 2011,  An-  30.  Yang S F, Leong K-F, Du Z H, et al. 2002, The design of
                 ti-biofouling properties of an amphoteric polymer brush   scaffolds for use in tissue engineering.  Part II.  Rapid
                 constructed on  a glass substrate.  Colloids Surface  B:   prototyping techniques.  Tissue Engineering,  vol.8(1):
                 Biointerfaces, vol.88(1): 455–462.                 1–11.
                 http://dx.doi.org/10.1016/j.colsurfb.2011.07.029.   http://dx.doi.org/10.1089/107632702753503009.
              20.  Kitano H, Suzuki H, Kondo T, et al. 2011, Image print-  31.  Landers R, Hübner  U, Schmelzeisen R,  et al.  2002,
                 ing on the surface of anti-biofouling zwitterionic poly-  Rapid prototyping of scaffolds derived from thermore-
                 mer  brushes by  ion  beam  irradiation.  Macromolecular   versible hydrogels and tailored for applications in tissue
                 Bioscience, vol.11(4): 557–564                     engineering. Biomaterials, vol.23(23): 4437–4447.
                 http://dx.doi.org/10.1002/mabi.201000437.          http://dx.doi.org/10.1016/S0142-9612(02)00139-4.
              21.  Nakamura M, Kobayashi A, Takagi F, et al. 2005, Bio-  32.  Griffith L G and Naughton G, 2002, Tissue engineering-
                 compatible inkjet printing technique for designed seed-  current challenges and expanding opportunities. Science,
                 ing  of  individual  living  cells.  Tissue Engineering,   vol.295(5557): 1009–1014.
                 vol.11(11-12): 1658–1666.                          http://dx.doi.org/10.1126/science.1069210.
                 http://dx.doi.org/10.1089/ten.2005.11.1658.    33.  Wu P K and Ringeisen B R, 2010, Development of hu-
              22.  Nishiyama Y, Nakamura M, Henmi C, et al. 2009, De-  man umbilical vein endothelial cell (HUVEC) and hu-
                 velopment of  a  three-dimensional bioprinter:  construc-  man umbilical vein smooth muscle cell (HUVSMC)
                 tion  of cell supporting structures using hydrogel and   branch/stem structures on hydrogel layers via biological
                 state-of-the-art inkjet technology.  Journal of  Biome-  laser printing (BioLP). Biofabrication, vol.2(1): 014111.
                 chanical Engineering, vol.131(3): 035001.          http://dx.doi.org/10.1088/1758-5082/2/1/014111.
                 http://dx.doi.org/10.1115/1.3002759.           34.  Okano T, Satoh S, Oka T, et al. 1997, Tissue engineer-
              23.  Nakamura M,  2010,  Reconstruction of  biological   ing of skeletal muscle highly dense, highly oriented hy-
                 three-dimensional tissues: bioprinting and biofabrication   brid muscular tissues  biomimicking native tissues.
                 using inkjet technology,  in  Cell and Organ  Printing.   ASAIO Journal, vol.43(5): M749–M753.
                 Springer, Netherlands, 23–33.                  35.  Kanda K and Matsuda T, 1994, Mechanical stress-indu-
                 http://dx.doi.org/10.1007/978-90-481-9145-1_2.     ced orientation and  ultrastructural change of smooth
              24.  Arai K, Iwanaga S, Toda H, et al. 2011, Three-dimen-  muscle cells cultured in three-dimensional collagen lat-
                 sional inkjet biofabrication  based on  designed images.   tices. Cell Transplant, vol.3(6): 481–492.
                 Biofabrication, vol.3(3): 034113.              36.  Zimmermann W H, Schneiderbanger K, Schubert P, et
                 http://dx.doi.org/10.1088/1758-5082/3/3/034113.    al. 2002, Tissue engineering of a differentiated cardiac
              25.  Matsuda T, Inoue K  and  Sugawara T,  1990, Develop-  muscle construct. Circulation Research, vol.90(2): 223–
                 ment of micropatterning technology for cultured cells.   230.
                 ASAIO Transactions, vol. 36(3): M559–M562.         http://dx.doi.org/10.1161/hh0202.103644.
              26.  Iwanaga S, Akiyama Y, Kikuchi A, et al. 2005, Fabrica-  37.  Eschenhagen T, Didié M, Heubach J, et al. 2002, Car-
                 tion of a cell array on ultrathin hydrophilic polymer gels   diac tissue engineering.  Transplant Immunology,
                 utilising electron beam irradiation and UV excimer laser   vol.9(2-4): 315–321.
                 ablation. Biomaterials, vol.26(26): 5395–5404.     http://dx.doi.org/10.1016/S0966-3274(02)00011-4.
                 http://dx.doi.org/10.1016/j.biomaterials.2005.01.021.   38.  Eschenhagen T  and  Zimmermann W  H,  2005, Engi-
              27.  Lauer L, Klein C and Offenhausser A, 2001, Spot com-  neering myocardial tissue.  Circulation Research,
                 pliant neuronal networks by structure  optimized mi-  vol.97(12): 1220–1231.
                 cro-contact printing.  Biomaterials,  vol.22(13):  1925–   http://dx.doi.org/10.1161/01.RES.0000196562.73231.7d




            48                          International Journal of Bioprinting (2015)–Volume 1, Issue 1
   47   48   49   50   51   52   53   54   55   56   57