Page 60 - IJB-1-1
P. 60
Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique
17. Wang F, Li Y, Shen Y, et al. 2013, The functions and technology and Bioengineering, vol.109(12): 3152–3160.
applications of RGD in tumor therapy and tissue engi- http://dx.doi.org/10.1002/bit.24591.
neering. International Journal of Molecular Sciences, 29. Norotte C, Marga F S, Niklason L E, et al. 2009, Scaf-
vol.14(7): 13447–13462. fold-free vascular tissue engineering using bioprinting.
http://dx.doi.org/10.3390/ijms140713447. Biomaterials, vol.30(30): 5910–5917.
18. Griffith L G, 2000, Polymeric biomaterials. Acta Mate- http://dx.doi.org/10.1016/j.biomaterials.2009.06.034.
rialia, vol.48(1): 263–277. 30. Chua C K and Yeong W Y, 2015, Introduction to tissue
http://dx.doi.org/10.1016/S1359-6454(99)00299-2. engineering, in Bioprinting: Principles and Application,
19. Onuki Y, Bhardwaj U, Papadimitrakopoulos F, et al. World Scientific Publishing, Singapore, 1–15.
2008, A review of the biocompatibility of implantable 31. Skardal A, Zhang J and Prestwich G D, 2010, Bioprint-
devices: Current challenges to overcome foreign body ing vessel-like constructs using hyaluronan hydrogels
response. Journal of Diabetes Science and Technology, crosslinked with tetrahedral polyethylene glycol tetra-
vol.2(6): 1003–1015. crylates. Biomaterials, vol.31(24): 6173–6181.
http://dx.doi.org/10.1177/193229680800200610. http://dx.doi.org/10.1016/j.biomaterials.2010.04.045.
20. Gui L, Zhao L, Spencer R W, et al. 2011, Development 32. Nishiyama Y, Nakamura M, Henmi C, et al. 2008, De-
of novel biodegradable polymer scaffolds for vascular velopment of a three-dimensional bioprinter: Construc-
tissue engineering. Tissue Engineering. Part A, tion of cell supporting structures using hydrogel and
vol.17(9–10): 1191–1200. state-of-the-art inkjet technology. Journal of Biome-
http://dx.doi.org/10.1089/ten.TEA.2010.0508. chanical Engineering, vol.131(3): 035001–035001.
21. Midha R, Munro C A, Dalton P D, et al. 2003, Growth http://dx.doi.org/10.1115/1.3002759.
factor enhancement of peripheral nerve regeneration 33. Visser J, Peters B, Burger T J, et al. 2013, Biofabrica-
through a novel synthetic hydrogel tube. Journal of tion of multi-material anatomically shaped tissue con-
Neurosurgery, vol.99(3): 555–565. structs. Biofabrication, vol.5(3): 035007.
http://dx.doi.org/10.3171/jns.2003.99.3.0555. http://dx.doi.org/10.1088/1758-5082/5/3/035007.
22. Freier T, Montenegro R, Koh H S, et al. 2005, Chi- 34. Zwanzig R and Harrison A K, 1985, Modifications of
tin-based tubes for tissue engineering in the nervous the Stokes–Einstein formula. The Journal of Chemical
system. Biomaterials, vol.26(22): 4624–4632. Physics, vol.83: 5861–5862.
http://dx.doi.org/10.1016/j.biomaterials.2004.11.040. http://dx.doi.org/10.1063/1.449616.
23. Dalton P D, Flynn L, and Shoichet M S, 2002, Manu- 35. Katzbauer B, 1998, Properties and applications of xan-
facture of poly (2-hydroxyethyl methacrylate-co-methyl than gum. Polymer Degradation and Stability, vol.59(1–3):
methacrylate) hydrogel tubes for use as nerve guidance 81–84.
channels. Biomaterials, vol.23(18): 3843–3851. http://dx.doi.org/10.1016/S0141-3910(97)00180-8.
http://dx.doi.org/10.1016/S0142-9612(02)00120-5. 36. Garcıa-Ochoa F, Santos V E, Casas J A, et al. 2000,
24. Mironov V, Kasyanov V, Shu X Z, et al. 2005, Fabrica- Xanthan gum: Production, recovery, and properties.
tion of tubular tissue constructs by centrifugal casting of Biotechnology Advances, vol.18(7): 549–579.
cells suspended in an in situ crosslinkable hyaluronan- http://dx.doi.org/10.1016/S0734-9750(00)00050-1.
gelatin hydrogel. Biomaterials, vol.26(36): 7628–7635. 37. Shimada K, Fujikawa K, Yahara K, et al. 1992, Anti-
http://dx.doi.org/10.1016/j.biomaterials.2005.05.061. oxidative properties of xanthan on the autoxidation of
25. Chung B G, Lee K-H, Khademhosseini A, et al. 2012, soybean oil in cyclodextrin emulsion. Journal of Agri-
Microfluidic fabrication of microengineered hydrogels cultural and Food Chemistry, vol.40(6): 945–948.
and their application in tissue engineering. Lab on a http://dx.doi.org/10.1021/jf00018a005.
Chip, vol.12(1): 45–59. 38. Rencher W F, 1995, Biocompatible drug delivery gel
http://dx.doi.org/10.1039/C1LC20859D. containing mixture of sodium carboxymethyl cellulose,
26. Sakai S, Liu Y, Mah E J, et al. 2013, Horseradish pe- xanthan gum and/or alginates, diluent. US Patent 5192802 A.
roxidase/catalase-mediated cell-laden alginate-based 39. Rencher W F, 1995, Bioadhesive pharmaceutical carrier.
hydrogel tube production in two-phase coaxial flow of US Patent 5462749 A.
aqueous solutions for filament-like tissues fabrication. 40. Lee J M and Yeong W Y, 2014, A preliminary model of
Biofabrication, vol.5(1): 015012. time-pressure dispensing system for bioprinting based
http://dx.doi.org/10.1088/1758-5082/5/1/015012. on printing and material parameters. Virtual and Physi-
27. Zhang L, Cao Z, Bai T, et al. 2013, Zwitterionic hydro- cal Prototyping, vol.10(1): 3–8.
gels implanted in mice resist the foreign-body reaction. http://dx.doi.org/10.1080/17452759.2014.979557.
Nature Biotechnology, vol.31(6): 553–556. 41. Mikkelsen A and Elgsaeter A, 2004, Density distribu-
http://dx.doi.org/10.1038/nbt.2580. tion of calcium-induced alginate gels. A numerical study.
28. Xu C, Chai W, Huang Y, et al. 2012, Scaffold-free inkjet Biopolymers, vol.36(1): 17–41.
printing of three-dimensional zigzag cellular tubes. Bio- http://dx.doi.org/10.1002/bip.360360104.
56 International Journal of Bioprinting (2015)–Volume 1, Issue 1

