Page 60 - IJB-1-1
P. 60

Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique

              17.  Wang F, Li Y, Shen Y, et al. 2013, The functions and   technology and Bioengineering, vol.109(12): 3152–3160.
                  applications of RGD in tumor therapy and tissue engi-  http://dx.doi.org/10.1002/bit.24591.
                  neering.  International Journal of Molecular Sciences,   29.  Norotte C, Marga F S, Niklason L E, et al. 2009, Scaf-
                  vol.14(7): 13447–13462.                           fold-free vascular tissue engineering using bioprinting.
                  http://dx.doi.org/10.3390/ijms140713447.          Biomaterials, vol.30(30): 5910–5917.
              18.  Griffith L G, 2000, Polymeric biomaterials. Acta Mate-  http://dx.doi.org/10.1016/j.biomaterials.2009.06.034.
                  rialia, vol.48(1): 263–277.                   30.  Chua C K and Yeong W Y, 2015, Introduction to tissue
                  http://dx.doi.org/10.1016/S1359-6454(99)00299-2.   engineering, in Bioprinting: Principles and Application,
              19.  Onuki  Y, Bhardwaj  U, Papadimitrakopoulos  F,  et al.   World Scientific Publishing, Singapore, 1–15.
                  2008, A review of the biocompatibility of implantable   31.  Skardal A, Zhang J and Prestwich G D, 2010, Bioprint-
                  devices:  Current challenges to overcome foreign body   ing vessel-like constructs using hyaluronan hydrogels
                  response. Journal of Diabetes Science and Technology,   crosslinked with tetrahedral polyethylene glycol tetra-
                  vol.2(6): 1003–1015.                              crylates. Biomaterials, vol.31(24): 6173–6181.
                  http://dx.doi.org/10.1177/193229680800200610.     http://dx.doi.org/10.1016/j.biomaterials.2010.04.045.
              20.  Gui L, Zhao L, Spencer R W, et al. 2011, Development   32.  Nishiyama Y, Nakamura M, Henmi C, et al. 2008, De-
                  of novel biodegradable  polymer scaffolds for vascular   velopment of a three-dimensional bioprinter: Construc-
                  tissue engineering.  Tissue Engineering. Part A,   tion of cell supporting  structures using hydrogel and
                  vol.17(9–10): 1191–1200.                          state-of-the-art inkjet technology.  Journal  of Biome-
                  http://dx.doi.org/10.1089/ten.TEA.2010.0508.      chanical Engineering, vol.131(3): 035001–035001.
              21.  Midha R, Munro C A, Dalton P D, et al. 2003, Growth   http://dx.doi.org/10.1115/1.3002759.
                  factor enhancement of peripheral  nerve regeneration   33.  Visser J, Peters B, Burger T J, et al. 2013, Biofabrica-
                  through a novel synthetic hydrogel tube.  Journal of   tion  of  multi-material anatomically  shaped tissue con-
                  Neurosurgery, vol.99(3): 555–565.                 structs. Biofabrication, vol.5(3): 035007.
                  http://dx.doi.org/10.3171/jns.2003.99.3.0555.     http://dx.doi.org/10.1088/1758-5082/5/3/035007.
              22.  Freier  T, Montenegro  R, Koh  H S,  et al. 2005,  Chi-  34.  Zwanzig  R  and Harrison  A K,  1985, Modifications of
                  tin-based  tubes for tissue engineering in the  nervous   the Stokes–Einstein formula. The Journal of Chemical
                  system. Biomaterials, vol.26(22): 4624–4632.      Physics, vol.83: 5861–5862.
                  http://dx.doi.org/10.1016/j.biomaterials.2004.11.040.   http://dx.doi.org/10.1063/1.449616.
              23.  Dalton P D, Flynn L, and Shoichet M S, 2002, Manu-  35.  Katzbauer B, 1998, Properties and applications of xan-
                  facture of poly (2-hydroxyethyl methacrylate-co-methyl   than gum. Polymer Degradation and Stability, vol.59(1–3):
                  methacrylate) hydrogel tubes for use as nerve guidance   81–84.
                  channels. Biomaterials, vol.23(18): 3843–3851.    http://dx.doi.org/10.1016/S0141-3910(97)00180-8.
                  http://dx.doi.org/10.1016/S0142-9612(02)00120-5.   36.  Garcıa-Ochoa  F, Santos  V E, Casas  J A,  et al.  2000,
              24.  Mironov V, Kasyanov V, Shu X Z, et al. 2005, Fabrica-  Xanthan gum:  Production, recovery, and properties.
                  tion of tubular tissue constructs by centrifugal casting of   Biotechnology Advances, vol.18(7): 549–579.
                  cells suspended in an in situ crosslinkable hyaluronan-   http://dx.doi.org/10.1016/S0734-9750(00)00050-1.
                  gelatin hydrogel. Biomaterials, vol.26(36): 7628–7635.   37.  Shimada  K, Fujikawa K, Yahara K,  et al.  1992,  Anti-
                  http://dx.doi.org/10.1016/j.biomaterials.2005.05.061.   oxidative  properties  of  xanthan on the autoxidation of
              25.  Chung B G, Lee K-H, Khademhosseini A, et al. 2012,   soybean oil in cyclodextrin emulsion. Journal of Agri-
                  Microfluidic fabrication  of microengineered  hydrogels   cultural and Food Chemistry, vol.40(6): 945–948.
                  and  their application  in tissue  engineering.  Lab  on a   http://dx.doi.org/10.1021/jf00018a005.
                  Chip, vol.12(1): 45–59.                       38.  Rencher W F,  1995,  Biocompatible drug delivery gel
                  http://dx.doi.org/10.1039/C1LC20859D.             containing mixture of sodium carboxymethyl cellulose,
              26.  Sakai S, Liu Y, Mah E J, et al. 2013, Horseradish pe-  xanthan gum and/or alginates, diluent. US Patent 5192802 A.
                  roxidase/catalase-mediated  cell-laden  alginate-based   39.  Rencher W F, 1995, Bioadhesive pharmaceutical carrier.
                  hydrogel tube production in two-phase coaxial flow of   US Patent 5462749 A.
                  aqueous  solutions for filament-like tissues fabrication.   40.  Lee J M and Yeong W Y, 2014, A preliminary model of
                  Biofabrication, vol.5(1): 015012.                 time-pressure dispensing  system for bioprinting  based
                  http://dx.doi.org/10.1088/1758-5082/5/1/015012.   on printing and material parameters. Virtual and Physi-
              27.  Zhang L, Cao Z, Bai T, et al. 2013, Zwitterionic hydro-  cal Prototyping, vol.10(1): 3–8.
                  gels implanted in mice resist the foreign-body reaction.   http://dx.doi.org/10.1080/17452759.2014.979557.
                  Nature Biotechnology, vol.31(6): 553–556.     41.  Mikkelsen  A  and Elgsaeter  A,  2004,  Density distribu-
                  http://dx.doi.org/10.1038/nbt.2580.               tion of calcium-induced alginate gels. A numerical study.
              28.  Xu C, Chai W, Huang Y, et al. 2012, Scaffold-free inkjet   Biopolymers, vol.36(1): 17–41.
                  printing of three-dimensional zigzag cellular tubes. Bio-  http://dx.doi.org/10.1002/bip.360360104.

            56                          International Journal of Bioprinting (2015)–Volume 1, Issue 1
   55   56   57   58   59   60   61   62   63   64   65