Page 128 - IJB-10-1
P. 128
International Journal of Bioprinting Droplet-based bioprinting of tumor spheroids
12. Lin RZ, Chou LF, Chien CC, Chang H-Y. Dynamic analysis 24. Kamisuki S, Hagata T, Tezuka C, Nose Y, Fujii M, Atobe
of hepatoma spheroid formation: Roles of E-cadherin and M. A low power, small, electrostatically driven driven
beta1-integrin. Cell Tissue Res. 2006;324(3):411-422. commercial inkjet head. Micro Electro Mechanical
doi: 10.1007/s00441-005-0148-2 Systems - Ieee Eleventh Annual International Workshop
Proceedings. 1998;1998;63-68.
13. Nath S, Devi GR. Three-dimensional culture systems in
cancer research: Focus on tumor spheroid model. Pharmacol 25. Nishiyama Y, Nakamura M, Henmi C, et al. Development
Ther. 2016;163: 94-108. of a three-dimensional bioprinter: construction of cell
doi: 10.1016/j.pharmthera.2016.03.013 supporting structures using hydrogel and State-Of-The-Art
inkjet technology. J Biomech Eng. 2009;131(3):035001.
14. Xu T, Kincaid H, Atala A, Yoo J. High-throughput production
of single-cell microparticles using an inkjet printing doi: 10.1115/1.3002759
technology. J Manuf Sci E-T Asme. 2008;130(2):021017. 26. Gao D, Yao D, Leist SK, Fei Y, Zhou J. Mechanisms and
doi: 10.1115/1.2903064 modeling of electrohydrodynamic phenomena. Int J Bioprint.
2019;5(1):166.
15. Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-
bioprinted acrylated peptides and PEG hydrogel with human doi: 10.18063/ijb.v5i1.166
mesenchymal stem cells promote robust bone and cartilage 27. Eagles PA, Qureshi AN, Jayasinghe SN. Electrohydrodynamic
formation with minimal printhead clogging. Biotechnol J. jetting of mouse neuronal cells. Biochem J. 2006;394(2):
2015;10(10):1568-1577. 375-378.
doi: 10.1002/biot.201400635 doi: 10.1042/BJ20051838
16. Xu T, Gregory CA, Molnar P, et al. Viability and 28. Workman VL, Tezera LB, Elkington PT, Jayasinghe SN.
electrophysiology of neural cell structures generated by the Controlled generation of microspheres incorporating
inkjet printing method. Biomaterials. 2006;27(19):3580- extracellular matrix fibrils for three-dimensional cell
3588. culture. Adv Funct Mater. 2014;24(18):2648-2657.
doi: 10.1016/j.biomaterials.2006.01.048 doi: 10.1002/adfm.201303891
17. Campbell A, Philipovskiy A, Heydarian R, Varela-Ramirez 29. Gasperini L, Maniglio D, Motta A, Migliaresi C. An
A. 2D and 3D thermally bioprinted human MCF-7 breast electrohydrodynamic bioprinter for alginate hydrogels
cancer cells: A promising model for drug discovery. J Clin containing living cells. Tissue Eng Part C Methods.
Oncol. 2019;37(15):2605. 2015;21(2):123-132.
doi: 10.1200/JCO.2019.37.15_suppl.2605 doi: 10.1089/ten.TEC.2014.0149
18. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. 30. Chen CH, Saville DA, Aksay IA. Electrohydrodynamic
Complex heterogeneous tissue constructs containing “drop-and-place” particle deployment. Appl Phys Lett.
multiple cell types prepared by inkjet printing technology. 2006;88(15):154104.
Biomaterials. 2013;34(1):130-139. doi: 10.1063/1.2191733
doi: 10.1016/j.biomaterials.2012.09.035
31. Poellmann MJ, Barton KL, Mishra S, Johnson AJW. Patterned
19. Xu T, Jin J, Gregory C, J Hickman JJJ, Boland T. Inkjet printing hydrogel substrates for cell culture with electrohydrodynamic
of viable mammalian cells. Biomaterials. 2005;26(1):93-99. jet printing. Macromol Biosci. 2011;11(9):1164-1168.
doi: 10.1016/j.biomaterials.2004.04.011 doi: 10.1002/mabi.201100004
20. Xu C, Chai W, Huang Y, Markwald RR. Scaffold-free 32. Gudapati H, Dey M, Ozbolat I. A comprehensive review
inkjet printing of three-dimensional zigzag cellular tubes. on droplet-based bioprinting: Past, present and future.
Biotechnol Bioeng. 2012;109(12):3152-3160. Biomaterials. 2016;102: 20-42.
doi: 10.1002/bit.24591 doi: 10.1016/j.biomaterials.2016.06.012
21. Cheng E, Yu H, Ahmadi A, Cheung KC. Investigation of 33. Onses MS, Sutanto E, Ferreira PM, Alleyne AG, Rogers
the hydrodynamic response of cells in drop on demand JA. Mechanisms, capabilities, and applications of high-
piezoelectric inkjet nozzles. Biofabrication. 2016;8(1): resolution electrohydrodynamic jet printing. Small.
015008. 2015;11(34):4237-4266.
doi: 10.1088/1758-5090/8/1/015008 doi: 10.1002/smll.201500593
22. Wijshoff H. The dynamics of the piezo inkjet printhead 34. Kim HS, Lee DY, Park JH, Hwang JH, Jung HI. Optimization
operation. Phys Rep. 2010;491(4-5):77-177. of electrohydrodynamic writing technique to print collagen.
doi: 10.1016/j.physrep.2010.03.003 Exp Tech. 2007;31(4):15-19.
doi: 10.1111/j.1747-1567.2007.00154.x
23. Shi J, Wu B, Li S, Song J, Song Band Lu WF. Shear stress
analysis and its effects on cell viability and cell proliferation 35. Chen X, O’Mahony AP,Barber T. The assessment of average
in drop-on-demand bioprinting. Biomed Phys Eng Expr. cell number inside in-flight 3D printed droplets in microvalve-
2018;4(4):045028. based bioprinting. J Appl Phys. 2022;131(22):224701.
doi: 10.1088/2057-1976/aac946 doi: 10.1063/5.0096468
Volume 10 Issue 1 (2024) 120 https://doi.org/10.36922/ijb.1214

