Page 128 - IJB-10-1
P. 128

International Journal of Bioprinting                              Droplet-based bioprinting of tumor spheroids




            12.  Lin RZ, Chou LF, Chien CC, Chang H-Y. Dynamic analysis   24.  Kamisuki S, Hagata T, Tezuka C, Nose Y, Fujii M, Atobe
               of hepatoma spheroid formation: Roles of E-cadherin and   M. A low power, small, electrostatically driven driven
               beta1-integrin. Cell Tissue Res. 2006;324(3):411-422.  commercial inkjet head.  Micro Electro Mechanical
               doi: 10.1007/s00441-005-0148-2                     Systems - Ieee Eleventh Annual International Workshop
                                                                  Proceedings. 1998;1998;63-68.
            13.  Nath S, Devi  GR. Three-dimensional culture  systems in
               cancer research: Focus on tumor spheroid model. Pharmacol   25.  Nishiyama Y, Nakamura M, Henmi C, et al. Development
               Ther. 2016;163: 94-108.                            of a three-dimensional bioprinter: construction of cell
               doi: 10.1016/j.pharmthera.2016.03.013              supporting structures using hydrogel and State-Of-The-Art
                                                                  inkjet technology. J Biomech Eng. 2009;131(3):035001.
            14.  Xu T, Kincaid H, Atala A, Yoo J. High-throughput production
               of single-cell microparticles using an inkjet printing      doi: 10.1115/1.3002759
               technology. J Manuf Sci E-T Asme. 2008;130(2):021017.  26.  Gao D, Yao D, Leist SK,  Fei Y, Zhou J. Mechanisms and
               doi: 10.1115/1.2903064                             modeling of electrohydrodynamic phenomena. Int J Bioprint.
                                                                  2019;5(1):166.
            15.  Gao G, Yonezawa T, Hubbell K,  Dai G, Cui X. Inkjet-
               bioprinted acrylated peptides and PEG hydrogel with human      doi: 10.18063/ijb.v5i1.166
               mesenchymal stem cells promote robust bone and cartilage   27.  Eagles PA, Qureshi AN, Jayasinghe SN. Electrohydrodynamic
               formation with minimal printhead clogging.  Biotechnol J.   jetting of mouse neuronal cells.  Biochem J. 2006;394(2):
               2015;10(10):1568-1577.                             375-378.
               doi: 10.1002/biot.201400635                        doi: 10.1042/BJ20051838
            16.  Xu T, Gregory CA, Molnar P,  et al. Viability and   28.  Workman  VL, Tezera LB,  Elkington PT,  Jayasinghe  SN.
               electrophysiology of neural cell structures generated by the   Controlled generation of microspheres incorporating
               inkjet  printing method.  Biomaterials.  2006;27(19):3580-  extracellular matrix fibrils for three-dimensional cell
               3588.                                              culture. Adv Funct Mater. 2014;24(18):2648-2657.
               doi: 10.1016/j.biomaterials.2006.01.048            doi: 10.1002/adfm.201303891
            17.  Campbell A, Philipovskiy A, Heydarian R, Varela-Ramirez   29.  Gasperini L, Maniglio D, Motta A,  Migliaresi C. An
               A. 2D and 3D thermally bioprinted human MCF-7 breast   electrohydrodynamic bioprinter for alginate hydrogels
               cancer cells: A promising model for drug discovery. J Clin   containing  living  cells.  Tissue Eng Part C Methods.
               Oncol. 2019;37(15):2605.                           2015;21(2):123-132.
               doi: 10.1200/JCO.2019.37.15_suppl.2605             doi: 10.1089/ten.TEC.2014.0149
            18.  Xu T, Zhao W, Zhu JM,  Albanna MZ, Yoo JJ, Atala A.   30.  Chen CH, Saville DA, Aksay IA. Electrohydrodynamic
               Complex heterogeneous tissue constructs containing   “drop-and-place” particle deployment.  Appl Phys Lett.
               multiple cell types prepared by inkjet printing technology.   2006;88(15):154104.
               Biomaterials. 2013;34(1):130-139.                  doi: 10.1063/1.2191733
               doi: 10.1016/j.biomaterials.2012.09.035
                                                               31.  Poellmann MJ, Barton KL, Mishra S, Johnson AJW. Patterned
            19.  Xu T, Jin J, Gregory C, J Hickman JJJ, Boland T. Inkjet printing   hydrogel substrates for cell culture with electrohydrodynamic
               of viable mammalian cells. Biomaterials. 2005;26(1):93-99.  jet printing. Macromol Biosci. 2011;11(9):1164-1168.
               doi: 10.1016/j.biomaterials.2004.04.011            doi: 10.1002/mabi.201100004
            20.  Xu C, Chai W, Huang Y,  Markwald RR. Scaffold-free   32.  Gudapati H, Dey M, Ozbolat I. A comprehensive review
               inkjet printing of three-dimensional zigzag cellular tubes.   on droplet-based bioprinting: Past, present and future.
               Biotechnol Bioeng. 2012;109(12):3152-3160.         Biomaterials. 2016;102: 20-42.
               doi: 10.1002/bit.24591                             doi: 10.1016/j.biomaterials.2016.06.012
            21.  Cheng E, Yu H, Ahmadi A,  Cheung KC. Investigation of   33.  Onses MS, Sutanto E, Ferreira PM,  Alleyne AG, Rogers
               the hydrodynamic response of cells in drop on demand   JA. Mechanisms, capabilities, and applications of high-
               piezoelectric inkjet nozzles.  Biofabrication. 2016;8(1):   resolution electrohydrodynamic jet printing.  Small.
               015008.                                            2015;11(34):4237-4266.
               doi: 10.1088/1758-5090/8/1/015008                  doi: 10.1002/smll.201500593
            22.  Wijshoff H. The dynamics of the piezo inkjet printhead   34.  Kim HS, Lee DY, Park JH, Hwang JH, Jung HI. Optimization
               operation. Phys Rep. 2010;491(4-5):77-177.         of electrohydrodynamic writing technique to print collagen.
               doi: 10.1016/j.physrep.2010.03.003                 Exp Tech. 2007;31(4):15-19.
                                                                  doi: 10.1111/j.1747-1567.2007.00154.x
            23.  Shi J, Wu B, Li S, Song J, Song Band Lu WF. Shear stress
               analysis and its effects on cell viability and cell proliferation   35.  Chen X, O’Mahony AP,Barber T. The assessment of average
               in  drop-on-demand bioprinting.  Biomed Phys Eng Expr.   cell number inside in-flight 3D printed droplets in microvalve-
               2018;4(4):045028.                                  based bioprinting. J Appl Phys. 2022;131(22):224701.
               doi: 10.1088/2057-1976/aac946                      doi: 10.1063/5.0096468

            Volume 10 Issue 1 (2024)                       120                          https://doi.org/10.36922/ijb.1214
   123   124   125   126   127   128   129   130   131   132   133