Page 131 - IJB-10-1
P. 131
International Journal of Bioprinting Droplet-based bioprinting of tumor spheroids
85. Markovitz-Bishitz Y, Tauber Y, Afrimzon E, et al. A polymer with self-assembly of endothelial cells. J Tissue Eng Regen
microstructure array for the formation, culturing, and high Med. 2019;13(10):1883-1895.
throughput drug screening of breast cancer spheroids. doi: 10.1002/term.2939
Biomaterials. 2010;31(32):8436-8444. 98. Chambers AF, Groom AC, MacDonald IC. Dissemination
doi: 10.1016/j.biomaterials.2010.07.050
and growth of cancer cells in metastatic sites. Nat Rev
86. Ling K, Huang G, Liu J, et al. Bioprinting-based high- Cancer. 2002;2(8):563-572.
throughput fabrication of three-dimensional MCF-7 human doi: 10.1038/nrc865
breast cancer cellular spheroids. Engineering. 2015;1(2):269- 99. Yilmaz M, Christofori G, Lehembre F. Distinct mechanisms
274. of tumor invasion and metastasis. Trends Mol Med.
doi: 10.15302/j-eng-2015062
2007;13(12):535-541.
87. Johnson PA, Menegatti S, Chambers AC, et al. A rapid high doi: 10.1016/j.molmed.2007.10.004
throughput bioprinted colorectal cancer spheroid platform 100. Pennacchietti S, Michieli P, Galluzzo M, Mazzone
for in vitro drug- and radiation-response. Biofabrication. M, Giordano S, Comoglio PM. Hypoxia promotes
2022;15(1):014103. invasive growth by transcriptional activation of the met
doi: 10.1088/1758-5090/ac999f
protooncogene. Cancer Cell. 2003;3(4):347-361.
88. Wang H, Tian T, Zhang J. Tumor-associated macrophages doi: 10.1016/S1535-6108(03)00085-0
(TAMs) in colorectal cancer (CRC):From mechanism to 101. Chen H, Du L, Li J, et al. Modeling cancer metastasis
therapy and prognosis. Int J Mol Sci. 2021;22(16):8470. using acoustically bio-printed patient-derived 3D
doi: 10.3390/ijms22168470
tumor microtissues. J Mater Chem B. 2022;10(11):
89. Jiang L, Ji N, Zhou Y, et al. CAL 27 is an oral adenosquamous 1843-1852.
carcinoma cell line. Oral Oncol. 2009;45(11):204-207. doi: 10.1039/d1tb02789a
doi: 10.1016/j.oraloncology.2009.06.001
102. Seftor RE, Hess AR, Seftor EA, et al. Tumor cell vasculogenic
90. Tanaka T, Ishigamori R. Understanding carcinogenesis for mimicry: From controversy to therapeutic promise. Am J
fighting oral cancer. J Oncol. 2011;2011: 603740. Pathol. 2012;181(4):1115-1125.
doi: 10.1155/2011/603740 doi: 10.1016/j.ajpath.2012.07.013
91. Kronemberger GS, Miranda G, Tavares RSN, Montenegro 103. Lee JM, Choi JW, Ahrberg CD, et al. Generation of tumor
B. Recapitulating tumorigenesis in vitro: opportunities spheroids using a droplet-based microfluidic device for
and challenges of 3D bioprinting. Front Bioeng Biotechnol. photothermal therapy. Microsyst Nanoeng. 2020;6(1):52.
2021;9: 682498. doi: 10.1038/s41378-020-0167-x
doi: 10.3389/fbioe.2021.682498
104. Yu L, Chen MC, Cheung KC. Droplet-based microfluidic
92. Ota H, Miki N. Microfluidic experimental platform for system for multicellular tumor spheroid formation and
producing size-controlled three-dimensional spheroids. anticancer drug testing. Lab Chip. 2010;10(18):2424-2432.
Sens Actuators, A. 2011;169(2):266-273. doi: 10.1039/c004590j
doi: 10.1016/j.sna.2011.03.051
105. Shi J, Song J, Song B, Lu WF. Multi-objective optimization
93. Dornhof J, Zieger V, Kieninger J, et al. Bioprinting-based design through machine learning for Drop-on-Demand
automated deposition of single cancer cell spheroids into oxygen bioprinting. Engineering. 2019;5(3):586-593.
sensor microelectrode wells. Lab Chip. 2022;22(22):4369-4381. doi: 10.1016/j.eng.2018.12.009
doi: 10.1039/d2lc00705c
106. Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry.
94. Chang HN, Moo-Young M. Estimation of oxygen Science. 2018;360(6394):1246-1251.
penetration depth in immobilized cells. Appl Microbiol doi: 10.1126/science.aan0096
Biotechnol. 1988;29(2):107-112. 107. De Moor L, Merovci I, Baetens S, et al. High-throughput
doi: 10.1007/BF00939293
fabrication of vascularized spheroids for bioprinting.
95. Rouwkema J, Rivron NC,van Blitterswijk CA. Vascularization Biofabrication. 2018;10(3):035009.
in tissue engineering. Trends Biotechnol. 2008;26(8): doi: 10.1088/1758-5090/aac7e6
434-441. 108. Souza TKF, Nucci MP, Mamani JB, et al. Image and motor
doi: 10.1016/j.tibtech.2008.04.009
behavior for monitoring tumor growth in C6 glioma model.
96. Lee VK, Guohao D, Hongyan Z, Yoo S. Generation of PLoS ONE. 2018;13(7):e0201453.
3-D glioblastoma-vascular niche using 3-D bioprinting. doi: 10.1371/journal.pone.0201453
Proceedings of the 41st Annual Northeast Biomedical 109. Liu J, Li K, Liu B. Far-red/near-infrared conjugated polymer
Engineering Conference (NEBEC). 2015;1-2.
nanoparticles for long-term in situ monitoring of liver
97. Trondle K, Koch F, Finkenzeller G, et al. Bioprinting of high tumor growth. Adv Sci. 2015;2(5):1500008.
cell-density constructs leads to controlled lumen formation doi: 10.1002/advs.201500008
Volume 10 Issue 1 (2024) 123 https://doi.org/10.36922/ijb.1214

