Page 129 - IJB-10-1
P. 129

International Journal of Bioprinting                              Droplet-based bioprinting of tumor spheroids




            36.  Ng WL, Lee JM, Yeong WY, Naing MW. Microvalve-based   48.  Elrod SA, Hadimioglu B, Khuri-Yakub BT, et al. Nozzleless
               bioprinting process, bioinks and applications. Biomater Sci.   droplet formation with focused acoustic beams. J Appl Phys.
               2017;5(4):632-647.                                 1989;65(9):3441-3447.
               doi: 10.1039/c6bm00861e                            doi: 10.1063/1.342663
            37.  Faulkner-Jones A, Fyfe C, Cornelissen DJ, et al. Bioprinting   49.  Demirci U, Montesano G. Single cell epitaxy by acoustic
               of human pluripotent stem cells and their directed   picolitre droplets. Lab Chip. 2007;7(9):1139-1145.
               differentiation into hepatocyte-like cells for the generation      doi: 10.1039/b704965j
               of mini-livers in 3D. Biofabrication. 2015;7(4):044102.  50.  Sriphutkiat Y, Kasetsirikul S, Ketpun D,  Zhou Y. Cell
               doi: 10.1088/1758-5090/7/4/044102
                                                                  alignment and accumulation using acoustic nozzle for
            38.  Chen X, O’Mahony AP, Barber T. Experimental study   bioprinting. Sci Rep. 2019;9(1):17774.
               of  the  stable  droplet  formation  process  during  micro-     doi: 10.1038/s41598-019-54330-8
               valve-based three-dimensional bioprinting.  Phys  Fluids.   51.  Chen Y, Liu X, Zhang C, Zhao Y. Enhancing and suppressing
               2023;35(1):011903.                                 effects of an inner droplet on deformation of a double emulsion
               doi: 10.1063/5.0129985
                                                                  droplet under shear. Lab Chip. 2015;15(5):1255-1261.
            39.  Xu F, Moon SJ, Emre AE, et al. A droplet-based building      doi: 10.1039/c4lc01231c
               block approach for bladder smooth muscle  cell (SMC)   52.  Zhang S, Li G, Man J,  et al. Fabrication of microspheres
               proliferation. Biofabrication. 2010;2(1):014105.   from high-viscosity bioink using a novel microfluidic-
               doi: 10.1088/1758-5082/2/1/014105
                                                                  based 3D bioprinting nozzle.  Micromachine Basel. 2020;
            40.  Xu F, Celli J, Rizvi I, Moon Sangjun, Hasan T, Demirci U. A   11(7):681.
               three-dimensional in vitro ovarian cancer coculture model      doi: 10.3390/mi11070681
               using a high-throughput cell patterning platform. Biotechnol   53.  Mesquita CRS, Charelli LE, Baptista LS,  Naveira-Cotta
               J. 2011;6(2):204-212.                              CP, Balbino TA. 2021;Continuous-mode encapsulation
               doi: 10.1002/biot.201000340
                                                                  of human stem  cell spheroids using droplet-based glass-
            41.  Demirci U, Montesano G. Cell encapsulating droplet   capillary microfluidic device for 3D bioprinting technology.
               vitrification. Lab Chip. 2007;7(11):1428-1433.     Biochem Eng J. 174: 8.
               doi: 10.1039/b705809h                              doi: 10.1016/j.bej.2021.108122
            42.  Faulkner-Jones A, Greenhough S, King JA,  Gardner J,   54.  Zhang P, Abate AR. High-definition single-cell printing:
               Courtney A, Shu W. Development of a valve-based cell   cell-by-cell fabrication of biological structures. Adv Mater.
               printer for the formation of human embryonic stem cell   2020;32(52):2005346.
               spheroid aggregates. Biofabrication. 2013;5(1):015013.     doi: 10.1002/adma.202005346
               doi: 10.1088/1758-5082/5/1/015013
                                                               55.  Gunti  S,  Hoke  ATK,  Vu  KP,  London  NR.  Organoid  and
            43.  Lee W, Debasitis JC, Lee VK,  et al. Multi-layered culture   spheroid tumor models: Techniques and applications.
               of human skin fibroblasts and keratinocytes through   Cancers. 2021;13(4):874.
               three-dimensional freeform fabrication.  Biomaterials.      doi: 10.3390/cancers13040874
               2009;30(8):1587-1595.                           56.  Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de
               doi: 10.1016/j.biomaterials.2008.12.009
                                                                  Boer J. Spheroid culture as a tool for creating 3D complex
            44.  Moon  S,  Hasan  SK,  Song  YS,  et  al.  Layer  by  layer  three-  tissues. Trends Biotechnol. 2013;31(2):108-115.
               dimensional tissue epitaxy by cell-laden hydrogel droplets.      doi: 10.1016/j.tibtech.2012.12.003
               Tissue Eng Part C-Me. 2010;16(1):157-166.       57.  Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor
               doi: 10.1089/ten.tec.2009.0179
                                                                  microenvironment complexity and therapeutic implications
            45.  Jentsch  S, Nasehi R,  Kuckelkorn C,  Gundert  B, Aveic S,   at a glance. Cell Commun Signal. 2020;18(1):59.
               Fischer H. Multiscale 3D bioprinting by nozzle-free acoustic      doi: 10.1186/s12964-020-0530-4
               droplet ejection. Small Methods. 2021;5(6):2000971.  58.  Vinci M, Gowan S, Boxall F, et al. Advances in establishment
               doi: 10.1002/smtd.202000971
                                                                  and analysis of three-dimensional tumor spheroid-based
            46.  Chen K, Jiang E, Wei X, et al. The acoustic droplet printing   functional assays for target validation and drug evaluation.
               of functional tumor microenvironments.  Lab Chip.   Bmc Biology. 2012;10: 29.
               2021;21(8):1604-1612.                              doi: 10.1186/1741-7007-10-29
               doi: 10.1039/d1lc00003a
                                                               59.  Qi X, Prokhorova AV, Mezentsev AV,  et al. Comparison
            47.  Hadimioglu B, Stearns R, Ellson R. Moving liquids with   of EMT-related and multi-drug resistant gene expression,
               sound: The physics of acoustic droplet ejection for robust   extracellular matrix production, and drug sensitivity in
               laboratory automation in life sciences.  J Lab Autom.   NSCLC spheroids generated by scaffold-free and scaffold-
               2016;21(1):4-18.                                   based methods. Int J Mol Sci. 2022;23(21):13306.
               doi: 10.1177/2211068215615096                      doi: 10.3390/ijms232113306

            Volume 10 Issue 1 (2024)                       121                          https://doi.org/10.36922/ijb.1214
   124   125   126   127   128   129   130   131   132   133   134