Page 129 - IJB-10-1
P. 129
International Journal of Bioprinting Droplet-based bioprinting of tumor spheroids
36. Ng WL, Lee JM, Yeong WY, Naing MW. Microvalve-based 48. Elrod SA, Hadimioglu B, Khuri-Yakub BT, et al. Nozzleless
bioprinting process, bioinks and applications. Biomater Sci. droplet formation with focused acoustic beams. J Appl Phys.
2017;5(4):632-647. 1989;65(9):3441-3447.
doi: 10.1039/c6bm00861e doi: 10.1063/1.342663
37. Faulkner-Jones A, Fyfe C, Cornelissen DJ, et al. Bioprinting 49. Demirci U, Montesano G. Single cell epitaxy by acoustic
of human pluripotent stem cells and their directed picolitre droplets. Lab Chip. 2007;7(9):1139-1145.
differentiation into hepatocyte-like cells for the generation doi: 10.1039/b704965j
of mini-livers in 3D. Biofabrication. 2015;7(4):044102. 50. Sriphutkiat Y, Kasetsirikul S, Ketpun D, Zhou Y. Cell
doi: 10.1088/1758-5090/7/4/044102
alignment and accumulation using acoustic nozzle for
38. Chen X, O’Mahony AP, Barber T. Experimental study bioprinting. Sci Rep. 2019;9(1):17774.
of the stable droplet formation process during micro- doi: 10.1038/s41598-019-54330-8
valve-based three-dimensional bioprinting. Phys Fluids. 51. Chen Y, Liu X, Zhang C, Zhao Y. Enhancing and suppressing
2023;35(1):011903. effects of an inner droplet on deformation of a double emulsion
doi: 10.1063/5.0129985
droplet under shear. Lab Chip. 2015;15(5):1255-1261.
39. Xu F, Moon SJ, Emre AE, et al. A droplet-based building doi: 10.1039/c4lc01231c
block approach for bladder smooth muscle cell (SMC) 52. Zhang S, Li G, Man J, et al. Fabrication of microspheres
proliferation. Biofabrication. 2010;2(1):014105. from high-viscosity bioink using a novel microfluidic-
doi: 10.1088/1758-5082/2/1/014105
based 3D bioprinting nozzle. Micromachine Basel. 2020;
40. Xu F, Celli J, Rizvi I, Moon Sangjun, Hasan T, Demirci U. A 11(7):681.
three-dimensional in vitro ovarian cancer coculture model doi: 10.3390/mi11070681
using a high-throughput cell patterning platform. Biotechnol 53. Mesquita CRS, Charelli LE, Baptista LS, Naveira-Cotta
J. 2011;6(2):204-212. CP, Balbino TA. 2021;Continuous-mode encapsulation
doi: 10.1002/biot.201000340
of human stem cell spheroids using droplet-based glass-
41. Demirci U, Montesano G. Cell encapsulating droplet capillary microfluidic device for 3D bioprinting technology.
vitrification. Lab Chip. 2007;7(11):1428-1433. Biochem Eng J. 174: 8.
doi: 10.1039/b705809h doi: 10.1016/j.bej.2021.108122
42. Faulkner-Jones A, Greenhough S, King JA, Gardner J, 54. Zhang P, Abate AR. High-definition single-cell printing:
Courtney A, Shu W. Development of a valve-based cell cell-by-cell fabrication of biological structures. Adv Mater.
printer for the formation of human embryonic stem cell 2020;32(52):2005346.
spheroid aggregates. Biofabrication. 2013;5(1):015013. doi: 10.1002/adma.202005346
doi: 10.1088/1758-5082/5/1/015013
55. Gunti S, Hoke ATK, Vu KP, London NR. Organoid and
43. Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture spheroid tumor models: Techniques and applications.
of human skin fibroblasts and keratinocytes through Cancers. 2021;13(4):874.
three-dimensional freeform fabrication. Biomaterials. doi: 10.3390/cancers13040874
2009;30(8):1587-1595. 56. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de
doi: 10.1016/j.biomaterials.2008.12.009
Boer J. Spheroid culture as a tool for creating 3D complex
44. Moon S, Hasan SK, Song YS, et al. Layer by layer three- tissues. Trends Biotechnol. 2013;31(2):108-115.
dimensional tissue epitaxy by cell-laden hydrogel droplets. doi: 10.1016/j.tibtech.2012.12.003
Tissue Eng Part C-Me. 2010;16(1):157-166. 57. Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor
doi: 10.1089/ten.tec.2009.0179
microenvironment complexity and therapeutic implications
45. Jentsch S, Nasehi R, Kuckelkorn C, Gundert B, Aveic S, at a glance. Cell Commun Signal. 2020;18(1):59.
Fischer H. Multiscale 3D bioprinting by nozzle-free acoustic doi: 10.1186/s12964-020-0530-4
droplet ejection. Small Methods. 2021;5(6):2000971. 58. Vinci M, Gowan S, Boxall F, et al. Advances in establishment
doi: 10.1002/smtd.202000971
and analysis of three-dimensional tumor spheroid-based
46. Chen K, Jiang E, Wei X, et al. The acoustic droplet printing functional assays for target validation and drug evaluation.
of functional tumor microenvironments. Lab Chip. Bmc Biology. 2012;10: 29.
2021;21(8):1604-1612. doi: 10.1186/1741-7007-10-29
doi: 10.1039/d1lc00003a
59. Qi X, Prokhorova AV, Mezentsev AV, et al. Comparison
47. Hadimioglu B, Stearns R, Ellson R. Moving liquids with of EMT-related and multi-drug resistant gene expression,
sound: The physics of acoustic droplet ejection for robust extracellular matrix production, and drug sensitivity in
laboratory automation in life sciences. J Lab Autom. NSCLC spheroids generated by scaffold-free and scaffold-
2016;21(1):4-18. based methods. Int J Mol Sci. 2022;23(21):13306.
doi: 10.1177/2211068215615096 doi: 10.3390/ijms232113306
Volume 10 Issue 1 (2024) 121 https://doi.org/10.36922/ijb.1214

