Page 130 - IJB-10-1
P. 130

International Journal of Bioprinting                              Droplet-based bioprinting of tumor spheroids




            60.  Ho WJ, Pham EA, Kim JW,  et al. Incorporation of   72.  Bhoopathi P, Pradhan AK, Bacolod MD, et al. Regulation of
               multicellular spheroids into 3-D polymeric scaffolds   neuroblastoma migration, invasion, and in vivo metastasis
               provides an improved tumor model for screening anticancer   by genetic and pharmacological manipulation of MDA-9/
               drugs. Cancer Sci. 2010;101(12):2637-2643.         Syntenin. Oncogene. 2019;38(41):6781-6793.
               doi: 10.1111/j.1349-7006.2010.01723.x              doi: 10.1038/s41388-019-0920-5
            61.  Qiu P, Qu X, Brackett DJ, Lerner MR, Li D, Mao C. Silica-  73.  Ducker M, Millar V, Ebner D, Szele FG. A semi-automated
               based branched hollow microfibers as a biomimetic   and scalable 3D spheroid assay to study neuroblast
               extracellular matrix for promoting tumor cell growth in   migration. Stem Cell Rep. 2020;15(3):789-802.
               vitro and in vivo. Adv Mater. 2013;25(17):2492-2496.     doi: 10.1016/j.stemcr.2020.07.012
               doi: 10.1002/adma.201204472
                                                               74.  Utama RH, Atapattu L, O’Mahony AP, et al. A 3D bioprinter
            62.  Ong SM, Zhao Z, Arooz T,  et al. Engineering a scaffold-  specifically designed for the high-throughput production
               free 3D tumor model for in vitro drug penetration studies.   of matrix-embedded multicellular spheroids.  iScience.
               Biomaterials. 2010;31(6):1180-1190.                2020;23(10):101621.
               doi: 10.1016/j.biomaterials.2009.10.049            doi: 10.1016/j.isci.2020.101621
            63.  Oliveira MB, Neto AI, Correia CR,  Rial-Hermida MI,   75.  Martin-Belmonte F, Perez-Moreno M. Epithelial cell polarity,
               Alvarez-Lorenzo C, Mano JF. Superhydrophobic chips for cell   stem cells and cancer. Nat Rev Cancer. 2011;12(1):23-38.
               spheroids high-throughput generation and drug screening.      doi: 10.1038/nrc3169
               ACS Appl Mater Interfaces. 2014;6(12):9488-9495.
               doi: 10.1021/am5018607                          76.  Trondle K, Rizzo L, Pichler R, et al. Scalable fabrication of
                                                                  renal spheroids and nephron-like tubules by bioprinting and
            64.  Franchi-Mendes T, Lopes N, Brito C. Heterotypic tumor   controlled self-assembly of epithelial cells.  Biofabrication.
               spheroids in agitation-based cultures: A scaffold-free cell   2021;13(3):035019.
               model that sustains long-term survival of endothelial cells.      doi: 10.1088/1758-5090/abe185
               Front Bioeng Biotechnol. 2021;9: 649949.
               doi: 10.3389/fbioe.2021.649949                  77.  Caruso S, Calatayud AL, Pilet J,  et al. Analysis of liver
                                                                  cancer cell lines identifies agents with likely efficacy
            65.  Tu TY, Wang Z, Bai J, et al. Rapid prototyping of concave   against hepatocellular carcinoma and markers of response.
               microwells for the formation of 3D multicellular cancer   Gastroenterology. 2019;157(3):760-776.
               aggregates for drug screening.  Adv Healthc Mater.      doi: 10.1053/j.gastro.2019.05.001
               2014;3(4):609-616.
               doi: 10.1002/adhm.201300151                     78.  Chen  Y, Sun W,  Kang L,  et  al. Microfluidic  co-culture of
                                                                  liver tumor spheroids with stellate cells for the investigation
            66.  Kim JA, Choi JH, Kim M, et al. High-throughput generation of   of  drug  resistance  and  intercellular interactions.  Analyst.
               spheroids using magnetic nanoparticles for three-dimensional   2019;144(14):4233-4240.
               cell culture. Biomaterials. 2013;34(34):8555-8563.     doi: 10.1039/c9an00612e
               doi: 10.1016/j.biomaterials.2013.07.056
                                                               79.  Khomich O, Ivanov AV, Bartosch B. Metabolic hallmarks of
            67.  Bowser DA, Moore MJ. 2019;Biofabrication of neural   hepatic stellate cells in liver fibrosis. Cells. 2020;9(1):24.
               microphysiological systems using magnetic spheroid      doi: 10.3390/cells9010024
               bioprinting. Biofabrication. 12(1):015002.
               doi: 10.1088/1758-5090/ab41b4                   80.  Hong G, Kim J, Oh H, et al. Production of multiple cell-laden
                                                                  microtissue spheroids with a biomimetic hepatic-lobule-like
            68.  Chen K, Wu M, Guo F,  et al. Rapid formation of size-  structure. Adv Mater. 2021;33(36):2102624.
               controllable multicellular spheroids via 3D acoustic      doi: 10.1002/adma.202102624
               tweezers. Lab Chip. 2016;16(14):2636-2643.
               doi: 10.1039/c6lc00444j                         81.  Zhang P, Li X, Chen JY, Abate AR. Controlled fabrication of
                                                                  functional liver spheroids with microfluidic flow cytometric
            69.  Rasouli  R, Tabrizian M. Rapid formation of  multicellular   printing. Biofabrication. 2022;14(4):045011.
               spheroids in boundary-driven acoustic microstreams. Small.      doi: 10.1088/1758-5090/ac8622
               2021;17(39):2101931.
               doi: 10.1002/smll.202101931                     82.  Trounson A. The production and directed differentiation of
                                                                  human embryonic stem cells. Endocr Rev. 2006;27(2):208-219.
            70.  Sebastian A, Buckle AM, Markx GH. Tissue engineering      doi: 10.1210/er.2005-0016
               with electric fields: Immobilization of mammalian cells in
               multilayer aggregates using dielectrophoresis.  Biotechnol   83.  Sun YS, Zhao Z, Yang ZN, et al. Risk factors and preventions
               Bioeng. 2007;98(3):694-700.                        of breast cancer. Int J Biol Sci. 2017;13(11):1387-1397.
               doi: 10.1002/bit.21416                             doi: 10.7150/ijbs.21635
            71.  Maris JM, Matthay KK. Molecular biology of neuroblastoma.   84.  Polyak K. Breast cancer: origins and evolution. J Clin Invest.
               J Clin Oncol. 1999;17(7):2264.                     2007;117(11):3155-3163.
               doi: 10.1200/jco.1999.17.7.2264                    doi: 10.1172/JCI33295

            Volume 10 Issue 1 (2024)                       122                          https://doi.org/10.36922/ijb.1214
   125   126   127   128   129   130   131   132   133   134   135