Page 130 - IJB-10-1
P. 130
International Journal of Bioprinting Droplet-based bioprinting of tumor spheroids
60. Ho WJ, Pham EA, Kim JW, et al. Incorporation of 72. Bhoopathi P, Pradhan AK, Bacolod MD, et al. Regulation of
multicellular spheroids into 3-D polymeric scaffolds neuroblastoma migration, invasion, and in vivo metastasis
provides an improved tumor model for screening anticancer by genetic and pharmacological manipulation of MDA-9/
drugs. Cancer Sci. 2010;101(12):2637-2643. Syntenin. Oncogene. 2019;38(41):6781-6793.
doi: 10.1111/j.1349-7006.2010.01723.x doi: 10.1038/s41388-019-0920-5
61. Qiu P, Qu X, Brackett DJ, Lerner MR, Li D, Mao C. Silica- 73. Ducker M, Millar V, Ebner D, Szele FG. A semi-automated
based branched hollow microfibers as a biomimetic and scalable 3D spheroid assay to study neuroblast
extracellular matrix for promoting tumor cell growth in migration. Stem Cell Rep. 2020;15(3):789-802.
vitro and in vivo. Adv Mater. 2013;25(17):2492-2496. doi: 10.1016/j.stemcr.2020.07.012
doi: 10.1002/adma.201204472
74. Utama RH, Atapattu L, O’Mahony AP, et al. A 3D bioprinter
62. Ong SM, Zhao Z, Arooz T, et al. Engineering a scaffold- specifically designed for the high-throughput production
free 3D tumor model for in vitro drug penetration studies. of matrix-embedded multicellular spheroids. iScience.
Biomaterials. 2010;31(6):1180-1190. 2020;23(10):101621.
doi: 10.1016/j.biomaterials.2009.10.049 doi: 10.1016/j.isci.2020.101621
63. Oliveira MB, Neto AI, Correia CR, Rial-Hermida MI, 75. Martin-Belmonte F, Perez-Moreno M. Epithelial cell polarity,
Alvarez-Lorenzo C, Mano JF. Superhydrophobic chips for cell stem cells and cancer. Nat Rev Cancer. 2011;12(1):23-38.
spheroids high-throughput generation and drug screening. doi: 10.1038/nrc3169
ACS Appl Mater Interfaces. 2014;6(12):9488-9495.
doi: 10.1021/am5018607 76. Trondle K, Rizzo L, Pichler R, et al. Scalable fabrication of
renal spheroids and nephron-like tubules by bioprinting and
64. Franchi-Mendes T, Lopes N, Brito C. Heterotypic tumor controlled self-assembly of epithelial cells. Biofabrication.
spheroids in agitation-based cultures: A scaffold-free cell 2021;13(3):035019.
model that sustains long-term survival of endothelial cells. doi: 10.1088/1758-5090/abe185
Front Bioeng Biotechnol. 2021;9: 649949.
doi: 10.3389/fbioe.2021.649949 77. Caruso S, Calatayud AL, Pilet J, et al. Analysis of liver
cancer cell lines identifies agents with likely efficacy
65. Tu TY, Wang Z, Bai J, et al. Rapid prototyping of concave against hepatocellular carcinoma and markers of response.
microwells for the formation of 3D multicellular cancer Gastroenterology. 2019;157(3):760-776.
aggregates for drug screening. Adv Healthc Mater. doi: 10.1053/j.gastro.2019.05.001
2014;3(4):609-616.
doi: 10.1002/adhm.201300151 78. Chen Y, Sun W, Kang L, et al. Microfluidic co-culture of
liver tumor spheroids with stellate cells for the investigation
66. Kim JA, Choi JH, Kim M, et al. High-throughput generation of of drug resistance and intercellular interactions. Analyst.
spheroids using magnetic nanoparticles for three-dimensional 2019;144(14):4233-4240.
cell culture. Biomaterials. 2013;34(34):8555-8563. doi: 10.1039/c9an00612e
doi: 10.1016/j.biomaterials.2013.07.056
79. Khomich O, Ivanov AV, Bartosch B. Metabolic hallmarks of
67. Bowser DA, Moore MJ. 2019;Biofabrication of neural hepatic stellate cells in liver fibrosis. Cells. 2020;9(1):24.
microphysiological systems using magnetic spheroid doi: 10.3390/cells9010024
bioprinting. Biofabrication. 12(1):015002.
doi: 10.1088/1758-5090/ab41b4 80. Hong G, Kim J, Oh H, et al. Production of multiple cell-laden
microtissue spheroids with a biomimetic hepatic-lobule-like
68. Chen K, Wu M, Guo F, et al. Rapid formation of size- structure. Adv Mater. 2021;33(36):2102624.
controllable multicellular spheroids via 3D acoustic doi: 10.1002/adma.202102624
tweezers. Lab Chip. 2016;16(14):2636-2643.
doi: 10.1039/c6lc00444j 81. Zhang P, Li X, Chen JY, Abate AR. Controlled fabrication of
functional liver spheroids with microfluidic flow cytometric
69. Rasouli R, Tabrizian M. Rapid formation of multicellular printing. Biofabrication. 2022;14(4):045011.
spheroids in boundary-driven acoustic microstreams. Small. doi: 10.1088/1758-5090/ac8622
2021;17(39):2101931.
doi: 10.1002/smll.202101931 82. Trounson A. The production and directed differentiation of
human embryonic stem cells. Endocr Rev. 2006;27(2):208-219.
70. Sebastian A, Buckle AM, Markx GH. Tissue engineering doi: 10.1210/er.2005-0016
with electric fields: Immobilization of mammalian cells in
multilayer aggregates using dielectrophoresis. Biotechnol 83. Sun YS, Zhao Z, Yang ZN, et al. Risk factors and preventions
Bioeng. 2007;98(3):694-700. of breast cancer. Int J Biol Sci. 2017;13(11):1387-1397.
doi: 10.1002/bit.21416 doi: 10.7150/ijbs.21635
71. Maris JM, Matthay KK. Molecular biology of neuroblastoma. 84. Polyak K. Breast cancer: origins and evolution. J Clin Invest.
J Clin Oncol. 1999;17(7):2264. 2007;117(11):3155-3163.
doi: 10.1200/jco.1999.17.7.2264 doi: 10.1172/JCI33295
Volume 10 Issue 1 (2024) 122 https://doi.org/10.36922/ijb.1214

