Page 439 - IJB-10-1
P. 439

International Journal of Bioprinting                               Mechanically biomimicking 3D bone model




            18.   Ma H, Suonan A, Zho J, et al. PEEK (Polyether-ether-ketone)   30.   James H. Use of cadavers to train surgeons: What are the
               and  its composite  materials  in orthopedic  implantation.   ethical issues? J Med Ethics. 2020;46:470-471.
               Arab J Chem. 2021;14(3):102977.                    doi: 10.1136/medethics-2019-105873
               doi: 10.1016/j.arabjc.2020.102977
                                                               31.  ASTM  F1839-08.  Standard Specification for Rigid
            19.   Parthasarathy J, Starly B, Raman S, Christensen A.   Polyurethane Foam for Use as a Standard Material for Testing
               Mechanical evaluation of porous titanium (Ti6Al4V)   Orthopaedic Devices and Instruments. ASTM International,
               structures with electron beam melting (EBM). J Mech Behav   West Conshohocken, PA. 2012.
               Biomed Mater. 2010;3(3):249-259.                   doi: 10.1520/F1839-08R21
               doi: 10.1016/j.jmbbm.2009.10.006
                                                               32.  American Society for Testing and Materials.  Standard  Test
            20.   Ghouse S, Reznikov N, Boughton OR. The design and in   Methods for Measuring Load Induced Subsidence of Intervertebral
               vivo testing of a locally stiffness-matched porous scaffold.   Body Fusion Device Under Static Axial Compression.  ASTM
               Appl Mater Today. 2019;15:377-388.                 International, West Conshohocken, PA. 2011.
               doi: 10.1016/j.apmt.2019.02.017                    doi: 10.1520/F2267-22
            21.  Barba D, Alabort E, Reed RC. Synthetic bone: Design   33.   Closkey RF, Parsons JR, Lee CK, M F Blacksin, Zimmerman
               by additive manufacturing.  Acta Biomater. 2019;97:   MC. Mechanics of interbody spinal fusion. Analysis of
               637-656.                                           critical bone graft area. Spine. 1993;18(8):1011-1015.
               doi: 10.1016/j.actbio.2019.07.049                  doi: 10.1097/00007632-199306150-00010
            22.  Su R, Chen J, Zhang X, et al. 3D‐printed micro/nano‐  34.   Lim TH, Kwon H, Jeon CH, et al. Effect of endplate
               scaled  mechanical  metamaterials:  Fundamentals,  conditions and bone mineral density on the compressive
               technologies, progress, applications, and challenges. Small.   strength of the graft–endplate interface in anterior cervical
               2023;19(29):2206391.                               spine fusion. Spine. 2001;26(8):951-956.
               doi: 10.1002/smll.202206391                        doi: 10.1097/00007632-200104150-00021
            23.  Distefano F, Pasta S, Epasto G. Titanium lattice structures   35.   Grant JP, Oxland TR, Dvorak MF. Mapping the structural
               produced via additive manufacturing for a bone scaffold: A   properties of the lumbosacral vertebral endplates.  Spine.
               review. J Funct Biomater. 2023;14(3):125.          2001;26(8):889-896.
               doi: 10.3390/jfb14030125                           doi: 10.1097/00007632-200104150-00012
            24.  Zhou Q, Su X, Wu J, et al. Additive manufacturing of   36.  Hakato J, Pezowicz C, Wronski J, Bedziński R, Kasprowicz
               bioceramic  implants for restoration bone engineering:   M. The process of subsidence after cervical stabilizations by
               Technologies, advances, and future perspectives.  ACS   cage alone, cage with plate and plate-cage. A biomechanical
               Biomater Sci Eng. 2023;9(3):1164-1189.             comparative study. Neurol Neurochir Pol. 2007;41(5):411.
               doi: 10.1021/acsbiomaterials.2c01164
                                                               37.  Marulanda GA, Nayak A, Murtagh R, Brandon G Santoni,
            25.  Jiao C, Xie D, He Z, et al. Additive manufacturing of   Billys JB, Castellvi AE. A cadaveric radiographic analysis on
               bio-inspired ceramic bone scaffolds: Structural design,   the effect of extreme lateral interbody fusion cage placement
               mechanical properties and biocompatibility. Mater Design.   with supplementary internal fixation on indirect spine
               2022;217:110610.                                   decompression. Clin Spine Surg. 2014;27(5):263-270.
               doi: 10.1016/j.matdes.2022.110610                  doi: 10.1097/bsd.0b013e31828f9da1
            26.  Yang Y, Wang G, Liang H, et al. Additive manufacturing of   38.   Schumacher Y. Comparison of two loading surface
               bone scaffolds. Int J Bioprint. 2019;5(1):148.     preparation methods on rat vertebral bodies for compression
               doi: 10.18063%2FIJB.v5i1.148                       testing. Queen’s University (Canada). 2013.
            27.   Kramschuster A, Turng LS. Fabrication of tissue engineering      http://hdl.handle.net/1974/8359
               scaffolds.  Handbook of Biopolymers and Biodegradable   39.   Collino RR, Kiapour A, Begley MR. Subsidence of
               Plastics: Properties, Processing and Applications. 2012;427-446.    additively-manufactured cages in foam substrates: effect of
               doi: 10.1016/B978-1-4557-2834-3.00017-3            contact topology. J Biomech Eng. 2020;142(9):091003.
            28.   Arifvianto B, Zhou J. Fabrication of metallic biomedical      doi: 10.1115/1.4046584
               scaffolds with the space holder method: A review. Materials.   40.   Flores-Johnson EA, Li QM. Indentation into polymeric
               2014;7(5):3588-3622.                               foams. Int J Solid Structur. 2010;47(16):1987-1995.
               doi: 10.3390/ma7053588                             doi: 10.1016/j.ijsolstr.2010.03.025
            29.   Lowe TG, Hashim S, Wilson LA. A biomechanical study   41.  Swan CC, Kosaka I. Voigt–Reuss topology optimization for
               of  regional  endplate strength  and  cage  morphology  as  it   structures with nonlinear material behaviors. Int J Numer
               relates to structural interbody support. Spine. 2004;29(21):   Methods Eng. 1997;40(20):3785-3814.
               2389-2394.                                         doi: 10.1002/(SICI)1097-0207(19971030)40:20%3C3785::
               doi: 10.1097/01.brs.0000143623.18098.e5            AID-NME240%3E3.0.CO;2-V

            Volume 10 Issue 1 (2024)                       431                          https://doi.org/10.36922/ijb.1067
   434   435   436   437   438   439   440   441   442   443   444