Page 439 - IJB-10-1
P. 439
International Journal of Bioprinting Mechanically biomimicking 3D bone model
18. Ma H, Suonan A, Zho J, et al. PEEK (Polyether-ether-ketone) 30. James H. Use of cadavers to train surgeons: What are the
and its composite materials in orthopedic implantation. ethical issues? J Med Ethics. 2020;46:470-471.
Arab J Chem. 2021;14(3):102977. doi: 10.1136/medethics-2019-105873
doi: 10.1016/j.arabjc.2020.102977
31. ASTM F1839-08. Standard Specification for Rigid
19. Parthasarathy J, Starly B, Raman S, Christensen A. Polyurethane Foam for Use as a Standard Material for Testing
Mechanical evaluation of porous titanium (Ti6Al4V) Orthopaedic Devices and Instruments. ASTM International,
structures with electron beam melting (EBM). J Mech Behav West Conshohocken, PA. 2012.
Biomed Mater. 2010;3(3):249-259. doi: 10.1520/F1839-08R21
doi: 10.1016/j.jmbbm.2009.10.006
32. American Society for Testing and Materials. Standard Test
20. Ghouse S, Reznikov N, Boughton OR. The design and in Methods for Measuring Load Induced Subsidence of Intervertebral
vivo testing of a locally stiffness-matched porous scaffold. Body Fusion Device Under Static Axial Compression. ASTM
Appl Mater Today. 2019;15:377-388. International, West Conshohocken, PA. 2011.
doi: 10.1016/j.apmt.2019.02.017 doi: 10.1520/F2267-22
21. Barba D, Alabort E, Reed RC. Synthetic bone: Design 33. Closkey RF, Parsons JR, Lee CK, M F Blacksin, Zimmerman
by additive manufacturing. Acta Biomater. 2019;97: MC. Mechanics of interbody spinal fusion. Analysis of
637-656. critical bone graft area. Spine. 1993;18(8):1011-1015.
doi: 10.1016/j.actbio.2019.07.049 doi: 10.1097/00007632-199306150-00010
22. Su R, Chen J, Zhang X, et al. 3D‐printed micro/nano‐ 34. Lim TH, Kwon H, Jeon CH, et al. Effect of endplate
scaled mechanical metamaterials: Fundamentals, conditions and bone mineral density on the compressive
technologies, progress, applications, and challenges. Small. strength of the graft–endplate interface in anterior cervical
2023;19(29):2206391. spine fusion. Spine. 2001;26(8):951-956.
doi: 10.1002/smll.202206391 doi: 10.1097/00007632-200104150-00021
23. Distefano F, Pasta S, Epasto G. Titanium lattice structures 35. Grant JP, Oxland TR, Dvorak MF. Mapping the structural
produced via additive manufacturing for a bone scaffold: A properties of the lumbosacral vertebral endplates. Spine.
review. J Funct Biomater. 2023;14(3):125. 2001;26(8):889-896.
doi: 10.3390/jfb14030125 doi: 10.1097/00007632-200104150-00012
24. Zhou Q, Su X, Wu J, et al. Additive manufacturing of 36. Hakato J, Pezowicz C, Wronski J, Bedziński R, Kasprowicz
bioceramic implants for restoration bone engineering: M. The process of subsidence after cervical stabilizations by
Technologies, advances, and future perspectives. ACS cage alone, cage with plate and plate-cage. A biomechanical
Biomater Sci Eng. 2023;9(3):1164-1189. comparative study. Neurol Neurochir Pol. 2007;41(5):411.
doi: 10.1021/acsbiomaterials.2c01164
37. Marulanda GA, Nayak A, Murtagh R, Brandon G Santoni,
25. Jiao C, Xie D, He Z, et al. Additive manufacturing of Billys JB, Castellvi AE. A cadaveric radiographic analysis on
bio-inspired ceramic bone scaffolds: Structural design, the effect of extreme lateral interbody fusion cage placement
mechanical properties and biocompatibility. Mater Design. with supplementary internal fixation on indirect spine
2022;217:110610. decompression. Clin Spine Surg. 2014;27(5):263-270.
doi: 10.1016/j.matdes.2022.110610 doi: 10.1097/bsd.0b013e31828f9da1
26. Yang Y, Wang G, Liang H, et al. Additive manufacturing of 38. Schumacher Y. Comparison of two loading surface
bone scaffolds. Int J Bioprint. 2019;5(1):148. preparation methods on rat vertebral bodies for compression
doi: 10.18063%2FIJB.v5i1.148 testing. Queen’s University (Canada). 2013.
27. Kramschuster A, Turng LS. Fabrication of tissue engineering http://hdl.handle.net/1974/8359
scaffolds. Handbook of Biopolymers and Biodegradable 39. Collino RR, Kiapour A, Begley MR. Subsidence of
Plastics: Properties, Processing and Applications. 2012;427-446. additively-manufactured cages in foam substrates: effect of
doi: 10.1016/B978-1-4557-2834-3.00017-3 contact topology. J Biomech Eng. 2020;142(9):091003.
28. Arifvianto B, Zhou J. Fabrication of metallic biomedical doi: 10.1115/1.4046584
scaffolds with the space holder method: A review. Materials. 40. Flores-Johnson EA, Li QM. Indentation into polymeric
2014;7(5):3588-3622. foams. Int J Solid Structur. 2010;47(16):1987-1995.
doi: 10.3390/ma7053588 doi: 10.1016/j.ijsolstr.2010.03.025
29. Lowe TG, Hashim S, Wilson LA. A biomechanical study 41. Swan CC, Kosaka I. Voigt–Reuss topology optimization for
of regional endplate strength and cage morphology as it structures with nonlinear material behaviors. Int J Numer
relates to structural interbody support. Spine. 2004;29(21): Methods Eng. 1997;40(20):3785-3814.
2389-2394. doi: 10.1002/(SICI)1097-0207(19971030)40:20%3C3785::
doi: 10.1097/01.brs.0000143623.18098.e5 AID-NME240%3E3.0.CO;2-V
Volume 10 Issue 1 (2024) 431 https://doi.org/10.36922/ijb.1067

