Page 440 - IJB-10-1
P. 440
International Journal of Bioprinting Mechanically biomimicking 3D bone model
42. Hosseini HS, Clouthier AL, Zysset PK. Experimental doi: 10.2147/jmdh.s4103
validation of finite element analysis of human vertebral
collapse under large compressive strains. J Biomech Eng. 45. de Beer N, Scheffer C. Reducing subsidence risk by using
2014;136(4):041006. rapid manufactured patient-specific intervertebral disc
doi: 10.1115/1.4026409 implants. Spine J. 2012;12(11):1060-1066.
doi: 10.1016/j.spinee.2012.10.003
43. Bouzakis KD, Mitsi S, Michailidis N, et al. Loading simulation
of lumbar spine vertebrae during a compression test using 46. Choudhury S, Raja D, Roy S, Datta S. Stress analysis of
the finite elements method and trabecular bone strength different types of cages in cervical vertebrae: A finite element
properties, determined by means of nanoindentations. J study. IOP Conf Ser: Mater Sci Eng. 2020;912:022025.
Musculoskelet Neuronal Interact. 2004;4(2):152-158. doi: 10.1088/1757-899X/912/2/022025
44. Kurutz M, Donáth J, Gálos M, Varga Péter, Fornet B. Age- 47. Cadman J, Sutterlin III C, Dabirrahmani D, Appleyard
and sex-related regional compressive strength characteristics R. 2016; The importance of loading the periphery of the
of human lumbar vertebrae in osteoporosis. J Multidiscip vertebral endplate. J Spine Surg. 2(3):178.
Healthc. 2008;1:105-121. doi: 10.21037/jss.2016.09.08
Volume 10 Issue 1 (2024) 432 https://doi.org/10.36922/ijb.1067

