Page 47 - IJB-2-1
P. 47
Christopher Chi Wai Tse, Shea Shin Ng, Jonathan Stringer, et al.
mers in cell-sized confinement. Soft Matter, vol.10(14): vol.27(7): 3238–3243.
2354–2364. http://dx.doi.org/10.1021/la2000156
http://dx.doi.org/10.1039/c3sm52421c 21. Müller A, Meyer J, Paumer T, et al., 2014, Cytoskeletal
10. Tomba C, Braïni C, Wu B, et al., 2014, Tuning the ad- transition in patterned cells correlates with interfacial
hesive geometry of neurons: length and polarity control. energy model. Soft Matter, vol.10(14): 2444–2452.
Soft Matter, vol.10(14): 2381–2387. http://dx.doi.org/10.1039/c3sm52424h
http://dx.doi.org/10.1039/c3sm52342j 22. Sanjana N E and Fuller S B, 2004, A fast flexible ink-jet
11. Röttgermann P J F, Alberola A P and Rädler J O, 2014, printing method for patterning dissociated neurons in
Cellular self-organization on micro-structured surfaces. culture. Journal of Neuroscience Methods, vol.136(2):
Soft Matter, vol.10(14): 2397–2404. 151–163.
http://dx.doi.org/10.1039/c3sm52419a http://dx.doi.org/10.1016/j.jneumeth.2004.01.011
12. Hampe N, Jonas T, Wolters B, et al., 2014, Defined 2-D 23. Lu Y, Shi W, Jiang L, et al., 2009, Rapid prototyping of
microtissues on soft elastomeric silicone rubber using paper-based microfluidics with wax for low-cost, porta-
lift-off epoxy-membranes for biomechanical analyses. ble bioassay. Electrophoresis, vol.30(9): 1497–1500.
Soft Matter, vol.10(14): 2431–2443. http://dx.doi.org/10.1002/elps.200800563
http://dx.doi.org/10.1039/c3sm53123f 24. Carrilho E, Martinez A W and Whitesides G M, 2009,
13. Schwarz U S, Nelson C M and Silberzan P, 2014, Pro- Understanding wax printing: A simple micropatterning
teins, cells, and tissues in patterned environments. Soft process for paper-based microfluidics. Analytical Che-
Matter, vol.10(14): 2337–2340. mistry, vol.81(16): 7091–7095.
http://dx.doi.org/10.1039/c4sm90028f http://dx.doi.org/10.1021/ac901071p
14. Fujii T, 2002, PDMS-based microfluidic devices for bio- 25. Renault C, Koehne J, Ricco A J, et al., 2014, Three-dim-
medical applications. Microelectronic Engineering, ensional wax patterning of paper fluidic devices. Lang-
vol.61–62: 907–914. muir, vol.30(23): 7030–7036.
http://dx.doi.org/10.1016/S0167-9317(02)00494-X http://dx.doi.org/10.1021/la501212b
15. Duffy D C, McDonald J C, Schueller O J A, et al., 1998, 26. Yun Y H, Lee B K, Choi J S, et al., 2011, A glucose
Rapid prototyping of microfluidic systems in poly(dim- sensor fabricated by piezoelectric inkjet printing of
ethylsiloxane). Analytical Chemistry, vol.70(23): 4974– conducting polymers and bienzymes. Analytical Science,
4984. vol.27(4): 375-379.
http://dx.doi.org/10.1021/ac980656z http://dx.doi.org/10.2116/analsci.27.375
16. Liu J, Enzelberger M and Quake S, 2002, A nanoliter 27. Setti L, Fraleoni-Morgera A, Ballarin B, et al., 2005, An
rotary device for polymerase chain reaction. Electro- amperometric glucose biosensor prototype fabricated by
phoresis, vol.23: 1531–1536. thermal inkjet printing. Biosensors and Bioelectronics,
http://dx.doi.org/10.1002/1522-2683(200205)23:10<153 vol.20(10): 2019–2026.
1::AID-ELPS1531>3.0.CO;2-D http://dx.doi.org/10.1016/j.bios.2004.09.022
17. Linder V, Wu H, Jiang X, et al., 2003, Rapid prototyping 28. Wang T, Cook C and Derby B, 2009, Fabrication of a
of 2D structures with feature sizes larger than 8 μm. glucose biosensor by piezoelectric inkjet printing: Pro-
Analytical Chemistry, vol.75(10): 2522–2527. ceedings of the Third International Conference on Sensor
http://dx.doi.org/10.1021/ac026441d Technologies and Applications, 2009 (SENSORCOM-
18. McDonald J C, Chabinyc M L, Metallo S J, et al., 2002, M’09), 82–85.
Prototyping of microfluidic devices in poly(dimethyl- http://dx.doi.org/10.1109/SENSORCOMM.2009.20
siloxane) using solid-object printing. Analytical Chemi- 29. Bietsch A, Zhang J, Hegner M, et al., 2004, Rapid func-
stry, vol.74(7): 1537–1545. tionalization of cantilever array sensors by inkjet print-
http://dx.doi.org/10.1021/ac010938q ing. Nanotechnology, vol.15(8): 873–880.
19. Love J C, Wolfe D B, Jacobs H O, et al., 2001, Micro- http://dx.doi.org/10.1088/0957-4484/15/8/002
scope projection photolithography for rapid prototyping 30. Selimović Š, Dokmeci M R and Khademhosseini A,
of masters with micron-scale features for use in soft li- 2013, Research highlights. Lab on a Chip, vol.13(3):
thography. Langmuir, vol.17(19): 6005–6012. 325–327.
http://dx.doi.org/10.1021/la010655t http://dx.doi.org/10.1039/c2lc90145e
20. Kwon K W, Choi J C, Suh K Y, et al., 2011, Multiscale 31. Kaigala G V, Ho S, Penterman R, et al., 2007, Rapid
fabrication of multiple proteins and topographical prototyping of microfluidic devices with a wax printer.
structures by combining capillary force lithography and Lab on a Chip, vol.7(3): 384–387.
microscope projection photolithography. Langmuir, http://dx.doi.org/10.1039/b617764f
International Journal of Bioprinting (2016)–Volume 2, Issue 1 43

