Page 47 - IJB-2-1
P. 47

Christopher Chi Wai Tse, Shea Shin Ng, Jonathan Stringer, et al.

                 mers in cell-sized confinement. Soft Matter, vol.10(14):   vol.27(7): 3238–3243.
                 2354–2364.                                         http://dx.doi.org/10.1021/la2000156
                 http://dx.doi.org/10.1039/c3sm52421c           21.  Müller A, Meyer J, Paumer T, et al., 2014, Cytoskeletal
              10.  Tomba C, Braïni C, Wu B, et al., 2014, Tuning the ad-  transition  in  patterned cells  correlates with  interfacial
                 hesive geometry of neurons: length and polarity control.   energy model. Soft Matter, vol.10(14): 2444–2452.
                 Soft Matter, vol.10(14): 2381–2387.                http://dx.doi.org/10.1039/c3sm52424h
                 http://dx.doi.org/10.1039/c3sm52342j           22.  Sanjana N E and Fuller S B, 2004, A fast flexible ink-jet
              11.  Röttgermann P J F, Alberola A P and Rädler J O, 2014,   printing method for patterning dissociated neurons in
                 Cellular self-organization on micro-structured surfaces.   culture.  Journal of Neuroscience  Methods, vol.136(2):
                 Soft Matter, vol.10(14): 2397–2404.                151–163.
                 http://dx.doi.org/10.1039/c3sm52419a               http://dx.doi.org/10.1016/j.jneumeth.2004.01.011
              12.  Hampe N, Jonas T, Wolters B, et al., 2014, Defined 2-D   23.  Lu Y, Shi W, Jiang L, et al., 2009, Rapid prototyping of
                 microtissues  on soft elastomeric silicone  rubber using   paper-based microfluidics with wax for low-cost, porta-
                 lift-off epoxy-membranes for biomechanical analyses.   ble bioassay. Electrophoresis, vol.30(9): 1497–1500.
                 Soft Matter, vol.10(14): 2431–2443.                http://dx.doi.org/10.1002/elps.200800563
                 http://dx.doi.org/10.1039/c3sm53123f           24.  Carrilho E, Martinez A W and Whitesides G M, 2009,
              13.  Schwarz U S, Nelson C M and Silberzan P, 2014, Pro-  Understanding wax  printing: A simple micropatterning
                 teins, cells, and tissues in patterned environments. Soft   process  for paper-based microfluidics.  Analytical Che-
                 Matter, vol.10(14): 2337–2340.                     mistry, vol.81(16): 7091–7095.
                 http://dx.doi.org/10.1039/c4sm90028f               http://dx.doi.org/10.1021/ac901071p
              14.  Fujii T, 2002, PDMS-based microfluidic devices for bio-  25.  Renault C, Koehne J, Ricco A J, et al., 2014, Three-dim-
                 medical applications.  Microelectronic Engineering,   ensional wax patterning of paper fluidic devices. Lang-
                 vol.61–62: 907–914.                                muir, vol.30(23): 7030–7036.
                 http://dx.doi.org/10.1016/S0167-9317(02)00494-X    http://dx.doi.org/10.1021/la501212b
              15.  Duffy D C, McDonald J C, Schueller O J A, et al., 1998,   26.  Yun Y H,  Lee B K, Choi  J S,  et al.,  2011,  A glucose
                 Rapid prototyping of microfluidic systems in poly(dim-  sensor fabricated  by piezoelectric inkjet printing  of
                 ethylsiloxane). Analytical Chemistry, vol.70(23): 4974–   conducting polymers and bienzymes. Analytical Science,
                 4984.                                              vol.27(4): 375-379.
                 http://dx.doi.org/10.1021/ac980656z                http://dx.doi.org/10.2116/analsci.27.375
              16.  Liu  J, Enzelberger M and  Quake  S, 2002,  A nanoliter   27.  Setti L, Fraleoni-Morgera A, Ballarin B, et al., 2005, An
                 rotary device for polymerase chain reaction.  Electro-  amperometric glucose biosensor prototype fabricated by
                 phoresis, vol.23: 1531–1536.                       thermal inkjet  printing.  Biosensors and  Bioelectronics,
                 http://dx.doi.org/10.1002/1522-2683(200205)23:10<153  vol.20(10): 2019–2026.
                 1::AID-ELPS1531>3.0.CO;2-D                         http://dx.doi.org/10.1016/j.bios.2004.09.022
              17.  Linder V, Wu H, Jiang X, et al., 2003, Rapid prototyping   28.  Wang T, Cook C and Derby B, 2009, Fabrication of a
                 of 2D structures  with  feature  sizes  larger  than  8  μm.   glucose biosensor by piezoelectric inkjet printing: Pro-
                 Analytical Chemistry, vol.75(10): 2522–2527.       ceedings of the Third International Conference on Sensor
                 http://dx.doi.org/10.1021/ac026441d                Technologies and Applications, 2009 (SENSORCOM-
              18.  McDonald J C, Chabinyc M L, Metallo S J, et al., 2002,   M’09), 82–85.
                 Prototyping of microfluidic devices in poly(dimethyl-  http://dx.doi.org/10.1109/SENSORCOMM.2009.20
                 siloxane) using solid-object printing. Analytical Chemi-  29.  Bietsch A, Zhang J, Hegner M, et al., 2004, Rapid func-
                 stry, vol.74(7): 1537–1545.                        tionalization of cantilever array sensors by inkjet print-
                 http://dx.doi.org/10.1021/ac010938q                ing. Nanotechnology, vol.15(8): 873–880.
              19.  Love J C, Wolfe D B, Jacobs H O, et al., 2001, Micro-  http://dx.doi.org/10.1088/0957-4484/15/8/002
                 scope projection photolithography for rapid prototyping   30.  Selimović  Š,  Dokmeci  M  R  and  Khademhosseini  A,
                 of masters with micron-scale features for use in soft li-  2013, Research  highlights.  Lab on a Chip, vol.13(3):
                 thography. Langmuir, vol.17(19): 6005–6012.        325–327.
                 http://dx.doi.org/10.1021/la010655t                http://dx.doi.org/10.1039/c2lc90145e
              20.  Kwon K W, Choi J C, Suh K Y, et al., 2011, Multiscale   31.  Kaigala  G V,  Ho  S, Penterman  R,  et  al.,  2007, Rapid
                 fabrication  of multiple proteins and topographical   prototyping of microfluidic devices with a wax printer.
                 structures by combining capillary force lithography and   Lab on a Chip, vol.7(3): 384–387.
                 microscope projection photolithography.  Langmuir,   http://dx.doi.org/10.1039/b617764f
                                        International Journal of Bioprinting (2016)–Volume 2, Issue 1      43
   42   43   44   45   46   47   48   49   50   51   52