Page 56 - IJB-2-1
P. 56
Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using…
http://dx.doi.org/10.1007/s00441-011-1311-6 applications of magnetically functionalized organic/inor-
14. Jakab K, Neagu A, Mironov V, et al., 2004, Engineering ganic hybrid nanofibers. International Journal of Mole-
biological structures of prescribed shape using self-asse- cular Sciences, vol.16(6): 13661–13677.
mbling multicellular systems. Proceeding of the National http://dx.doi.org/10.3390/ijms160613661
Academy of Science of the United States of America, 24. Ho V H, Muller K H, Barcza A, et al., 2010, Generation
vol.101(9): 2864–2869. and manipulation of magnetic multicellular spheroids.
http://dx.doi.org/10.1073/pnas.0400164101 Biomaterials, vol.31(11): 3095–3102.
15. Skardal A and Atala A, 2015, Biomaterials for integration http://dx.doi.org/10.1016/j.biomaterials.2009.12.047
with 3-D bioprinting. Annals of Biomedical Engineering, 25. Lin R Z, Chu W C, Chiang C C, et al., 2008, Magnetic
vol.43(3): 730–746. reconstruction of three-dimensional tissues from multi-
http://dx.doi.org/10.1007/s10439-014-1207-1 cellular spheroid. Tissue Engineering Part C: Methods,
16. Itoh M, Nakayama K, Noguchi R, et al., 2015, Scaf- vol.14(3): 197–205.
fold-free tubular tissues created by a bio-3D printer un- http://dx.doi.org/10.1089/ten.tec.2008.0061
dergo remodeling and endothelialization when implanted 26. Mattix B, Olsen T R, Gu Y, et al., 2014, Biological mag-
in rat aortae. PLOS ONE, vol.10(9): e0136681. netic cellular spheroids as building blocks for tissue en-
http://dx.doi.org/10.1371/journal.pone.0136681 gineering. Acta Biomaterialia, vol.10(2): 623–629.
17. Dvir T, Timko B P, Kohane D S, et al., 2011, Nanotech- http://dx.doi.org/10.1016/j.actbio.2013.10.021
nological strategies for engineering complex tissues. Na- 27. Whatley B R, Li X, Zhang N, et al., 2014, Magnet-
ture Nanotechnology, vol.6(1): 13–22. ic-directed patterning of cell spheroids. Journal of Bio-
http://dx.doi.org/10.1038/nnano.2010.246 medical Materials Research A, vol.102(5): 1537–1547.
18. Rezende R A, Azevedo F S, Pereira F D A S, et al., 2012, http://dx.doi.org/10.1002/jbm.a.34797
Nanotechnological strategies for biofabrication of human 28. Durmus N G, Tekin H C, Guven S, et al., 2015, Magnetic
organs. Journal of Nanotechnology, vol.2012: 1–10. levitation of single cells. Proceedings of the National
http://dx.doi.org/10.1155/2012/149264 Academy of Science of the United States of America,
19. Mironov V, Kasyanov V and Markwald R R, 2008, Na- vol.112(28): E3661–3668.
notechnology in vascular tissue engineering: From na- http://dx.doi.org/10.1073/pnas.1509250112
noscaffolding towards rapid vessel biofabrication. Trends 29. Mirica K A, Ilievski F, Ellerbee A K, et al., 2011, Using
in Biotechnology, vol.26(6): 338–344. magnetic levitation for three dimensional self-assembly.
http://dx.doi.org/10.1016/j.tibtech.2008.03.001 Advanced Materials, vol.23(36): 4134–4140.
20. Pham Q P, Sharma U and Mikos A G, 2006, Electrospin- http://dx.doi.org/10.1002/adma.201101917
ning of polymeric nanofibers for tissue engineering ap- 30. Tasoglu S, Yu C H, Liaudanskaya V, et al., 2015, Mag-
plications: A review. Tissue Engineering, vol.12(5): 1197– netic levitational assembly for living material fabrication.
1211. Advanced Healthcare Materials, vol.4(10): 1469–1476, 1422.
http://dx.doi.org/10.1089/ten.2006.12.1197 http://dx.doi.org/10.1002/adhm.201500092
21. Beachley V, Kasyanov V, Nagy-Mehesz A, et al., 2014, 31. Kasyanov V, Brakke K, Vilbrandt T, et al., 2011, Toward
The fusion of tissue spheroids attached to pre-stretched organ printing: Design characteristics, virtual modelling
electrospun polyurethane scaffolds. Journal of Tissue En- and physical prototyping vascular segments of kidney ar-
gineering, vol.5: 1–11. terial tree. Virtual and Physical Prototyping, vol.6(4):
http://dx.doi.org/10.1177/2041731414556561 197–213.
22. Chua K N, Lim W S, Zhang P, et al., 2005, Stable immo- http://dx.doi.org/10.1080/17452759.2011.631738
bilization of rat hepatocyte spheroids on galactosylated 32. Xia L, Sakban R B, Qu Y, et al., 2012, Tethered spheroids
nanofiber scaffold. Biomaterials, vol.26(15): 2537–2547. as an in vitro hepatocyte model for drug safety screening.
http://dx.doi.org/10.1016/j.biomaterials.2004.07.040 Biomaterials, vol.33(7): 2165–2176.
23. Lee H J, Lee S J, Uthaman S, et al., 2015, Biomedical http://dx.doi.org/10.1016/j.biomaterials.2011.12.006
52 International Journal of Bioprinting (2016)–Volume 2, Issue 1

