Page 56 - IJB-2-1
P. 56

Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using…

                 http://dx.doi.org/10.1007/s00441-011-1311-6       applications of magnetically functionalized organic/inor-
            14.  Jakab K, Neagu A, Mironov V, et al., 2004, Engineering   ganic hybrid nanofibers.  International Journal  of Mole-
                 biological structures of prescribed shape using self-asse-  cular Sciences, vol.16(6): 13661–13677.
                 mbling multicellular systems. Proceeding of the National   http://dx.doi.org/10.3390/ijms160613661
                 Academy  of Science of the United  States of  America,   24.  Ho V H, Muller K H, Barcza A, et al., 2010, Generation
                 vol.101(9): 2864–2869.                            and  manipulation  of magnetic multicellular spheroids.
                 http://dx.doi.org/10.1073/pnas.0400164101         Biomaterials, vol.31(11): 3095–3102.
            15.  Skardal A and Atala A, 2015, Biomaterials for integration   http://dx.doi.org/10.1016/j.biomaterials.2009.12.047
                 with 3-D bioprinting. Annals of Biomedical Engineering,   25.  Lin R Z, Chu W C, Chiang C C, et al., 2008, Magnetic
                 vol.43(3): 730–746.                               reconstruction of three-dimensional tissues from multi-
                 http://dx.doi.org/10.1007/s10439-014-1207-1       cellular spheroid.  Tissue Engineering Part  C: Methods,
            16.  Itoh M, Nakayama  K, Noguchi  R,  et al.,  2015, Scaf-  vol.14(3): 197–205.
                 fold-free tubular tissues created by a bio-3D printer un-  http://dx.doi.org/10.1089/ten.tec.2008.0061
                 dergo remodeling and endothelialization when implanted   26.  Mattix B, Olsen T R, Gu Y, et al., 2014, Biological mag-
                 in rat aortae. PLOS ONE, vol.10(9): e0136681.     netic cellular spheroids as building blocks for tissue en-
                 http://dx.doi.org/10.1371/journal.pone.0136681    gineering. Acta Biomaterialia, vol.10(2): 623–629.
            17.  Dvir T, Timko B P, Kohane D S, et al., 2011, Nanotech-  http://dx.doi.org/10.1016/j.actbio.2013.10.021
                 nological strategies for engineering complex tissues. Na-  27.  Whatley  B R, Li  X, Zhang  N,  et al., 2014, Magnet-
                 ture Nanotechnology, vol.6(1): 13–22.             ic-directed  patterning of cell spheroids.  Journal of Bio-
                 http://dx.doi.org/10.1038/nnano.2010.246          medical Materials Research A, vol.102(5): 1537–1547.
            18.  Rezende R A, Azevedo F S, Pereira F D A S, et al., 2012,   http://dx.doi.org/10.1002/jbm.a.34797
                 Nanotechnological strategies for biofabrication of human   28.  Durmus N G, Tekin H C, Guven S, et al., 2015, Magnetic
                 organs. Journal of Nanotechnology, vol.2012: 1–10.   levitation  of  single cells.  Proceedings of the National
                 http://dx.doi.org/10.1155/2012/149264             Academy  of Science of the United  States of  America,
            19.  Mironov V, Kasyanov V and Markwald R R, 2008, Na-  vol.112(28): E3661–3668.
                 notechnology in  vascular tissue engineering:  From na-  http://dx.doi.org/10.1073/pnas.1509250112
                 noscaffolding towards rapid vessel biofabrication. Trends   29.  Mirica K A, Ilievski F, Ellerbee A K, et al., 2011, Using
                 in Biotechnology, vol.26(6): 338–344.             magnetic levitation  for three  dimensional self-assembly.
                 http://dx.doi.org/10.1016/j.tibtech.2008.03.001   Advanced Materials, vol.23(36): 4134–4140.
            20.  Pham Q P, Sharma U and Mikos A G, 2006, Electrospin-  http://dx.doi.org/10.1002/adma.201101917
                 ning of polymeric nanofibers for tissue  engineering ap-  30.  Tasoglu S, Yu C H, Liaudanskaya V, et al., 2015, Mag-
                 plications: A review. Tissue Engineering, vol.12(5): 1197–   netic levitational assembly for living material fabrication.
                 1211.                                             Advanced Healthcare Materials, vol.4(10): 1469–1476, 1422.
                 http://dx.doi.org/10.1089/ten.2006.12.1197        http://dx.doi.org/10.1002/adhm.201500092
            21.  Beachley V, Kasyanov V, Nagy-Mehesz A, et al., 2014,   31.  Kasyanov V, Brakke K, Vilbrandt T, et al., 2011, Toward
                 The fusion  of  tissue  spheroids attached  to  pre-stretched   organ  printing: Design  characteristics,  virtual modelling
                 electrospun polyurethane scaffolds. Journal of Tissue En-  and physical prototyping vascular segments of kidney ar-
                 gineering, vol.5: 1–11.                           terial tree.  Virtual and Physical Prototyping, vol.6(4):
                 http://dx.doi.org/10.1177/2041731414556561        197–213.
            22.  Chua K N, Lim W S, Zhang P, et al., 2005, Stable immo-  http://dx.doi.org/10.1080/17452759.2011.631738
                 bilization  of rat hepatocyte spheroids  on  galactosylated   32.  Xia L, Sakban R B, Qu Y, et al., 2012, Tethered spheroids
                 nanofiber scaffold. Biomaterials, vol.26(15): 2537–2547.   as an in vitro hepatocyte model for drug safety screening.
                 http://dx.doi.org/10.1016/j.biomaterials.2004.07.040   Biomaterials, vol.33(7): 2165–2176.
            23.  Lee H J, Lee S J, Uthaman  S,  et al.,  2015, Biomedical   http://dx.doi.org/10.1016/j.biomaterials.2011.12.006













            52                          International Journal of Bioprinting (2016)–Volume 2, Issue 1
   51   52   53   54   55   56   57   58   59   60   61