Page 75 - IJB-2-1
P. 75
Hui Wang, Sanjairaj Vijayavenkataraman, Yang Wu, et al.
12. Li W J, Laurencin C T, Caterson E J, et al., 2002, Elec- earch Part B: Applied Biomaterials, vol.102(4): 651–658.
trospun nanofibrous structure: A novel scaffold for tissue http://dx.doi.org/10.1002/jbm.b.33043
engineering. Journal of Biomedical Materials Research, 25. Gasperini L, Maniglio D, Motta A, et al., 2014, An elec-
vol.60(4): 613–621. trohydrodynamic bioprinter for alginate hydrogels con-
http://dx.doi.org/10.1002/jbm.10167 taining living cells. Tissue Engineering Part C: Methods,
13. Sill T J and von Recum H A, 2008, Electrospinning: Ap- vol.21(2): 123–132.
plications in drug delivery and tissue engineering. Bio- http://dx.doi.org/10.1089/ten.TEC.2014.0149
materials, vol.29(13): 1989–2006. 26. Cai Y, Li J L, Poh C K, et al., 2013, Collagen grafted 3D
http://dx.doi.org/10.1016/j.biomaterials.2008.01.011 polycaprolactone scaffolds for enhanced cartilage rege-
14. Yang F, Murugan R, Wang S, et al., 2005, Electrospin- neration. Journal of Materials Chemistry B, vol.1(43):
ning of nano/micro scale poly (L-lactic acid) aligned fi- 5971–5976.
bers and their potential in neural tissue engineering. http://dx.doi.org/0.1039/C3TB20680G
Biomaterials, vol.26(15): 2603–2610. 27. Doshi J and Reneker D H, 1993, Electrospinning process
http://dx.doi.org/10.1016/j.biomaterials.2004.06.051 and applications of electrospun fibers, In Industry Ap-
15. Richards D J, Tan Y, Jia J, et al., 2013, 3D printing for plications Society Annual Meeting, Conference Record of
tissue engineering. Israel Journal of Chemistry, the 1993 IEEE: 1698–1703.
vol.53(9–10): 805–814. 28. Mitchell G R, Ahn K H and Davis F J, 2011, The poten-
http://dx.doi.org/10.1002/ijch.201300086 tial of electrospinning in rapid manufacturing processes.
16. Mironov V, Boland T, Trusk T, et al., 2003, Organ print- Virtual and Physical Prototyping, vol.6(2): 63–77.
ing: Computer-aided jet-based 3D tissue engineering. http://dx.doi.org/10.1080/17452759.2011.590387
Trends in Biotechnology, vol.21(4): 157–161. 29. Thompson C J, Chase G G, Yarin A L, et al., 2007, Ef-
http://dx.doi.org/0.1016/S0167-7799(03)00033-7 fects of parameters on nanofiber diameter determined
17. Hollister S J, 2005, Porous scaffold design for tissue en- from electrospinning model. Polymer, vol.48(23): 6913–
gineering. Nature Materials, vol.4(7): 518–524. 6922.
http://dx.doi.org/10.1038/nmat1421 http://dx.doi.org/10.1016/j.polymer.2007.09.017
18. Boland T, Xu T, Damon B, et al., 2006, Application of 30. Bu N, Huang Y, Wang X, et al., 2012, Continuously tun-
inkjet printing to tissue engineering. Biotechnology able and oriented nanofiber direct-written by mechano-
Journal, vol.1(9): 910–917. electrospinning. Materials and Manufacturing Processes,
http://dx.doi.org/10.1002/biot.200600081 vol.27(12): 1318–1323.
19. Yeong W Y, Chua C K, Leong K F, et al., 2004, Rapid http://dx.doi.org/10.1080/10426914.2012.700145
prototyping in tissue engineering: Challenges and poten- 31. Chanthakulchan A, Koomsap P, Auyson K, et al., 2015,
tial. Trends in Biotechnology, vol.22(12): 643–652. Development of an electrospinning-based rapid proto-
http://dx.doi.org/10.1016/j.tibtech.2004.10.004 typing for scaffold fabrication. Rapid Prototyping Jour-
20. An J, Teoh J E M, Suntornnond R, et al., 2015, Design nal, vol.21(3): 329–339.
and 3D printing of scaffolds and tissues. Engineering, http://dx.doi.org/10.1108/RPJ-11-2013-0119
vol.1(2), 261–268. 32. Auyson K, Koomsap P, Chanthakulchan A, et al., 2013,
http://dx.doi.org/10.15302/J-ENG-2015061 Investigation of applying electrospinning in fused depo-
21. Gupta A, Seifalian A M, Ahmad Z, et al., 2007, Novel sition modeling for scaffold fabrication. In High Value
electrohydrodynamic printing of nanocomposite biopo- Manufacturing: Advanced Research in Virtual and Rapid
lymer scaffolds. Journal of Bioactive and Compatible Prototyping, Proceedings of the 6th International Confe-
Polymers, vol.22(3), 265–280. rence on Advanced Research in Virtual and Rapid Pro-
http://dx.doi.org/10.1177/0883911507078268 totyping, CRC Press: 149.
22. Wei C and Dong J, 2013, Direct fabrication of high-res- 33. Bisht G S, Canton G, Mirsepassi A, et al., 2011, Con-
olution three-dimensional polymeric scaffolds using ele- trolled continuous patterning of polymeric nanofibers on
ctrohydrodynamic hot jet plotting. Journal of Microme- three-dimensional substrates using low-voltage near-field
chanics and Microengineering, vol.23(2): 025017. Electrospinning. Nano Letters, vol.11(4): 1831–1837.
http://dx.doi.org/10.1088/0960-1317/23/2/025017 http://dx.doi.org/10.1021/nl2006164
23. Ahmad Z, Rasekh M and Edirisinghe M, 2010, Electro- 34. Chang C, Limkrailassiri K and Lin L, 2008, Continuous
hydrodynamic direct writing of biomedical polymers and near-field electrospinning for large area deposition of
composites. Macromolecular Materials and Engineering, orderly nanofiber patterns. Applied Physics Letters,
vol.295(4): 315–319. vol.93(12): 123111.
http://dx.doi.org/10.1002/mame.200900396 http://dx.doi.org/10.1063/1.2975834
24. Li J L, Cai Y L, Guo Y L, et al., 2014, Fabrication of 35. Li J L, Guo Y L, Thian E S, et al., 2013, 3-Dimensional
three-dimensional porous scaffolds with controlled fila- meniscal fibrillar scaffolds, apparatus and process for the
ment orientation and large pore size via an improved fabrication thereof, UK Patent filing, 2013. Application
E-jetting technique. Journal of Biomedical Materials Res- No. 1315074.3.
International Journal of Bioprinting (2016)–Volume 2, Issue 1 71

