Page 75 - IJB-2-1
P. 75

Hui Wang, Sanjairaj  Vijayavenkataraman, Yang  Wu,  et al.

              12.  Li W J, Laurencin C T, Caterson E J, et al., 2002, Elec-  earch Part B: Applied Biomaterials, vol.102(4): 651–658.
                 trospun nanofibrous structure: A novel scaffold for tissue   http://dx.doi.org/10.1002/jbm.b.33043
                 engineering. Journal of Biomedical Materials Research,   25.  Gasperini L, Maniglio D, Motta A, et al., 2014, An elec-
                 vol.60(4): 613–621.                                trohydrodynamic bioprinter for alginate  hydrogels con-
                 http://dx.doi.org/10.1002/jbm.10167                taining living cells. Tissue Engineering Part C: Methods,
              13.  Sill T J and von Recum H A, 2008, Electrospinning: Ap-  vol.21(2): 123–132.
                 plications in drug delivery and tissue engineering. Bio-  http://dx.doi.org/10.1089/ten.TEC.2014.0149
                 materials, vol.29(13): 1989–2006.              26.  Cai Y, Li J L, Poh C K, et al., 2013, Collagen grafted 3D
                 http://dx.doi.org/10.1016/j.biomaterials.2008.01.011   polycaprolactone scaffolds for enhanced cartilage rege-
              14.  Yang F, Murugan R, Wang S, et al., 2005, Electrospin-  neration.  Journal of  Materials  Chemistry  B,  vol.1(43):
                 ning of nano/micro scale poly (L-lactic acid) aligned fi-  5971–5976.
                  bers  and  their  potential  in  neural  tissue  engineering.   http://dx.doi.org/0.1039/C3TB20680G
                 Biomaterials, vol.26(15): 2603–2610.           27.  Doshi J and Reneker D H, 1993, Electrospinning process
                 http://dx.doi.org/10.1016/j.biomaterials.2004.06.051   and  applications  of  electrospun  fibers,  In  Industry  Ap-
              15.  Richards D J, Tan Y, Jia J, et al., 2013, 3D printing for   plications Society Annual Meeting, Conference Record of
                 tissue engineering.  Israel Journal of  Chemistry,   the 1993 IEEE: 1698–1703.
                 vol.53(9–10): 805–814.                         28.  Mitchell G R, Ahn K H and Davis F J, 2011, The poten-
                 http://dx.doi.org/10.1002/ijch.201300086           tial of electrospinning in rapid manufacturing processes.
              16.  Mironov V, Boland T, Trusk T, et al., 2003, Organ print-  Virtual and Physical Prototyping, vol.6(2): 63–77.
                 ing:  Computer-aided  jet-based  3D  tissue  engineering.   http://dx.doi.org/10.1080/17452759.2011.590387
                 Trends in Biotechnology, vol.21(4): 157–161.   29.  Thompson C J, Chase G G, Yarin A L, et al., 2007, Ef-
                 http://dx.doi.org/0.1016/S0167-7799(03)00033-7     fects  of  parameters  on  nanofiber  diameter  determined
              17.  Hollister S J, 2005, Porous scaffold design for tissue en-  from electrospinning model. Polymer, vol.48(23): 6913–
                 gineering. Nature Materials, vol.4(7): 518–524.    6922.
                 http://dx.doi.org/10.1038/nmat1421                 http://dx.doi.org/10.1016/j.polymer.2007.09.017
              18.  Boland T, Xu T, Damon B, et al., 2006, Application of   30.  Bu N, Huang Y, Wang X, et al., 2012, Continuously tun-
                 inkjet  printing  to  tissue  engineering.  Biotechnology   able and oriented nanofiber direct-written by mechano-
                 Journal, vol.1(9): 910–917.                        electrospinning. Materials and Manufacturing Processes,
                 http://dx.doi.org/10.1002/biot.200600081           vol.27(12): 1318–1323.
              19.  Yeong W Y, Chua C K, Leong K F, et al., 2004, Rapid   http://dx.doi.org/10.1080/10426914.2012.700145
                 prototyping in tissue engineering: Challenges and poten-  31.  Chanthakulchan A, Koomsap P, Auyson K, et al., 2015,
                 tial. Trends in Biotechnology, vol.22(12): 643–652.   Development  of  an  electrospinning-based rapid  proto-
                 http://dx.doi.org/10.1016/j.tibtech.2004.10.004    typing for scaffold fabrication. Rapid Prototyping Jour-
              20.  An J, Teoh J E M, Suntornnond R, et al., 2015, Design   nal, vol.21(3): 329–339.
                 and  3D  printing  of  scaffolds and  tissues.  Engineering,   http://dx.doi.org/10.1108/RPJ-11-2013-0119
                 vol.1(2), 261–268.                             32.  Auyson K, Koomsap P, Chanthakulchan A, et al., 2013,
                 http://dx.doi.org/10.15302/J-ENG-2015061           Investigation of applying electrospinning in fused depo-
              21.  Gupta A, Seifalian A M, Ahmad Z, et al., 2007, Novel   sition modeling  for scaffold  fabrication. In  High Value
                 electrohydrodynamic  printing  of  nanocomposite  biopo-  Manufacturing: Advanced Research in Virtual and Rapid
                 lymer  scaffolds.  Journal  of  Bioactive  and  Compatible   Prototyping, Proceedings of the 6th International Confe-
                 Polymers, vol.22(3), 265–280.                      rence on Advanced Research in Virtual and Rapid Pro-
                 http://dx.doi.org/10.1177/0883911507078268         totyping, CRC Press: 149.
              22.  Wei C and Dong J, 2013, Direct fabrication of high-res-  33.  Bisht G  S, Canton G, Mirsepassi A, et al., 2011, Con-
                 olution three-dimensional polymeric scaffolds using ele-  trolled continuous patterning of polymeric nanofibers on
                 ctrohydrodynamic hot jet plotting. Journal of Microme-  three-dimensional substrates using low-voltage near-field
                  chanics and Microengineering, vol.23(2): 025017.   Electrospinning. Nano Letters, vol.11(4): 1831–1837.
                 http://dx.doi.org/10.1088/0960-1317/23/2/025017    http://dx.doi.org/10.1021/nl2006164
              23.  Ahmad Z, Rasekh M and Edirisinghe M, 2010, Electro-  34.  Chang C, Limkrailassiri K and Lin L, 2008, Continuous
                 hydrodynamic direct writing of biomedical polymers and   near-field  electrospinning  for  large  area  deposition  of
                  composites. Macromolecular Materials and Engineering,   orderly  nanofiber  patterns.  Applied  Physics  Letters,
                  vol.295(4): 315–319.                              vol.93(12): 123111.
                  http://dx.doi.org/10.1002/mame.200900396          http://dx.doi.org/10.1063/1.2975834
              24.  Li J L, Cai Y L, Guo Y L, et al., 2014, Fabrication of   35.  Li J L, Guo Y L, Thian E S, et al., 2013, 3-Dimensional
                  three-dimensional porous scaffolds with controlled fila-  meniscal fibrillar scaffolds, apparatus and process for the
                  ment  orientation  and  large  pore  size  via  an  improved   fabrication thereof, UK Patent filing, 2013. Application
                  E-jetting technique. Journal of Biomedical Materials Res-  No. 1315074.3.

                                        International Journal of Bioprinting (2016)–Volume 2, Issue 1      71
   70   71   72   73   74   75   76   77   78   79   80