Page 60 - IJB-2-2
P. 60

Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide

              20.  Meyer J C, Geim A K, Katsnelson M I, et al., 2007, The   27.  Chhabra R P and Richardson J F, 2011, Non-Newtonian
                 structure of suspended graphene sheets. Nature, vol.446:   flow and  Applied  Rheology: Engineering  Applications,
                                                                     nd
                 60–63.                                             2  edn, Elsevier, UK.
                 http://dx.doi.org/10.1038/nature05545          28.  Coulson J M, Richardson J F, Backhurst J R, et al., 1999,
              21.  Ionita M, Pandele M A and Iovu H, 2013, Sodium algi-  Coulson  and Richardson's  Chemical  Engineering  Vo-
                 nate/graphene oxide  composite films with enhanced   lume 1‒Fluid  Flow,  Heat  Transfer and  Mass  Transfer,
                                                                     th
                 thermal and mechanical properties.  Carbohydrate Po-  6  edn, Elsevier, Oxford, UK.
                 lymers, vol.94(1): 339–344.                    29.  Winter H H and Chambon F,  1986, Analysis of linear
                 http://dx.doi.org/10.1016/j.carbpol.2013.01.065    viscoelasticity of a crosslinking polymer at the gel point.
              22.  Chung J H Y,  Naficy S, Yue  Z,  et al., 2013, Bio-ink   Journal of Rheology (1978–present), vol.30(2): 367 ‒382.
                 properties and printability  for extrusion printing living   http://dx.doi.org/10.1122/1.549853
                 cells. Biomaterials Science, vol.1(7): 763–773.   30.  Li L and Aoki Y, 1997, Rheological images of poly(vi-
                 http://dx.doi.org/10.1039/c3bm00012e               nyl chloride) gels. 1. The dependence of sol −gel transition
              23.  Liu Y, Ling S,  Wang  S,  et al., 2014, Thixotropic  silk   on concentation. Macromolecules, vol.30(25): 7835 ‒7841.
                 nanofibril-based hydrogel with extracellular matrix-like   http://dx.doi.org/10.1021/ma971045w
                 structure. Biomaterials Science, vol.2(10): 1338–1342.   31.  Te Nijenhuis K and Winter H H, 1989, Mechanical
                 http://dx.doi.org/10.1039/C4BM00214H               properties at the gel point of a crystallizing poly(vinyl
              24.  Ohsedo  Y, Oono M, Saruhashi K, et al., 2014, A new   chloride) solution. Macromolecules, vol.22(1): 411‒414.
                 composite thixotropic hydrogel composed of a low-mol-  http://dx.doi.org/10.1021/ma00191a074
                 ecular-weight hydrogelator and a nanosheet.  RSC Ad-  32.  Habas J-P, Pavie E, Lapp A, et al., 2004, Understanding
                 vances, vol.4(84): 44837–44840.                    the  complex rheological behavior of PEO–PPO–PEO
                 http://dx.doi.org/10.1039/C4RA08542F               copolymers in  aqueous solution.  Journal of Rheology
              25.  Talbot E L, Yang L, Berson A, et al., 2014, Control of   (1978–present), vol.48(1): 1–21.
                 the particle distribution  in  inkjet printing through an   http://dx.doi.org/10.1122/1.1634988
                 evaporation-driven sol–gel transition. ACS Applied Ma-  33.  Liu S, Yu W and Zhou C, 2013, Solvents effects in the
                 terials and Interfaces, vol.6(12): 9572–9583.      formation and viscoelasticity of DBS organogels.  Soft
                 http://dx.doi.org/10.1021/am501966n                Matter, vol.9(3): 864–874.
              26.  Barnes H A, 1997,  Thixotropy—a  review.  Journal of   http://dx.doi.org/10.1039/C2SM27030G
                 Non-Newtonian Fluid Mechanics, vol.70(1–2): 1–33.   34.  Tadros T F, 2011, Rheology of Dispersions: Principles
                 http://dx.doi.org/10.1016/S0377-0257(97)00004-9    and Applications, John Wiley & Sons, New Jersey, US.



































            66                          International Journal of Bioprinting (2016)–Volume 2, Issue 2
   55   56   57   58   59   60   61   62   63   64   65