Page 507 - IJB-10-2
P. 507

International Journal of Bioprinting                               Mineralization of 3D-printed PHA scaffolds




               spheres using silver nanoparticles loaded with poly-  31.   Li L, Li Y, Yang L, et al. Polydopamine coating promotes
               dopamine spheres. RSC Adv. 2015;5(18):13470-13477.  early osteogenesis in 3D printing porous Ti6Al4V scaffolds.
               doi: 10.1039/c4ra16469e                            Ann Transl Med. 2019;7(11):240-240.
            21.   Kim H, Lee K, Ko CY, et al. The role of nacreous factors in      doi: 10.21037/atm.2019.04.79
               preventing osteoporotic bone loss through both osteoblast   32.   Kao CT, Lin CC, Chen YW, Yeh CH, Fang HY, Shie MY.
               activation and  osteoclast  inactivation.  Biomaterials.   Poly(dopamine) coating of 3D printed poly(lactic acid)
               2012;33(30):7489-7496.                             scaffolds for bone tissue engineering.  Mater Sci Eng C.
               doi: 10.1016/j.biomaterials.2012.06.098            2015;56:165-173.
            22.   Zhang X, Li J, Chen J, et al. Enhanced bone regeneration via      doi: 10.1016/j.msec.2015.06.028
               PHA scaffolds coated with polydopamine-captured BMP2.    33.   Jo S, Kang SM, Park SA, Kim WD, Kwak J, Lee H. Enhanced
               J Mater Chem B. 2022;10(32):6214-6227.             adhesion of preosteoblasts inside 3D PCL scaffolds by
               doi: 10.1039/d2tb01122k                            polydopamine coating and mineralization. Macromol Biosci.
            23.   Auclair-Daigle C, Bureau MN, Legoux JG, Yahia L.   2013;13(10):1389-1395.
               Bioactive hydroxyapatite coatings on polymer composites      doi: 10.1002/mabi.201300203
               for orthopedic implants.  J Biomed Mater Res A.   34.   Im  S,  Choe  G,  Seok  JM,  et  al. An  osteogenic  bioink
               2005;73(4):398-408.                                composed of alginate, cellulose nanofibrils, and
               doi: 10.1002/jbm.a.30284                           polydopamine nanoparticles for 3D bioprinting and
            24.   Múzquiz-Ramos EM,  Cortés-Hernández  DA,  Escobedo-  bone  tissue  engineering.  Int J Biol Macromol.  2022;205:
               Bocardo J. Biomimetic apatite coating on magnetite   520-529.
               particles. Mater Lett. 2010;64(9):1117-1119.       doi: 10.1016/j.ijbiomac.2022.02.012
               doi: 10.1016/j.matlet.2010.02.025               35.   Park J, Lee SJ, Jung TG, et al. Surface modification of a three-
            25.   Park JH, Lee DY, Oh KT, Lee YK, Kim KM, Kim KN.   dimensional polycaprolactone scaffold by polydopamine,
               Bioactivity of calcium phosphate coatings prepared by   biomineralization, and BMP-2 immobilization for potential
               electrodeposition in a modified simulated body fluid. Mater   bone tissue applications.  Colloids Surf B Biointerfaces.
               Lett. 2006;60(21-22):2573-2577.                    2021;199:111528.
               doi: 10.1016/j.matlet.2005.07.091                  doi: 10.1016/j.colsurfb.2020.111528
            26.   Guo W,  Yang  K, Qin  X,  Luo R, Wang  H,  Huang R.   36.   Loty C, Sautier JM, Boulekbache H, Kokubo T, Kim
               Polyhydroxyalkanoates in tissue repair and regeneration.   HM, Forest N. In vitro bone formation on a bone-like
               Eng Regen. 2022;3(1):24-40.                        apatite layer prepared by a biomimetic process on a
               doi: 10.1016/j.engreg.2022.01.003                  bioactive glass-ceramic.  J Biomed Mater Res. 2000;49(4):
            27.   Garot C, Bettega G, Picart C. Additive manufacturing of   423-434.
               material scaffolds for bone regeneration: toward application      doi: 10.1002/(sici)1097-4636(20000315)49:4<423::aid-
               in the clinics. Adv Funct Mater. 2021;31(5):2006967.  jbm1>3.0.co;2-7
               doi: 10.1002/adfm.202006967                     37.   Konka J, Buxadera-Palomero J, Espanol M, Ginebra MP. 3D
            28.   Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H. Scaffolds   printing of hierarchical porous biomimetic hydroxyapatite
               for bone healing: concepts, materials and evidence. Injury.   scaffolds: adding concavities to the convex filaments. Acta
               2011;42(6):569-573.                                Biomater. 2021;134:744-759.
               doi: 10.1016/j.injury.2011.03.033                  doi: 10.1016/j.actbio.2021.07.071
            29.   Dhania S,  Bernela M, Rani R, et  al. Scaffolds the   38.   Avanzi IR, Parisi JR, Souza A, et al. 3D-printed hydroxyapatite
               backbone of tissue engineering: advancements in use   scaffolds for bone tissue engineering: a systematic review in
               of polyhydroxyalkanoates (PHA).  Int  J Biol Macromol.   experimental animal studies.  J Biomed Mater Res B Appl
               2022;208:243-259.                                  Biomater. 2023;111(1):203-219.
               doi: 10.1016/j.ijbiomac.2022.03.030                doi: 10.1002/jbm.b.35134
            30.   Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari   39.   Barba A, Maazouz Y, Diez-Escudero A, et al. Osteogenesis by
               L, Guarino V. Polyhydroxyalkanoate (PHA): applications   foamed and 3D-printed nanostructured calcium phosphate
               in drug delivery and tissue engineering. Exp Rev Med Dev.   scaffolds: effect of pore architecture.  Acta Biomater.
               2019;16(6):467-482.                                2018;79:135-147.
               doi: 10.1080/17434440.2019.1615439                 doi: 10.1016/j.actbio.2018.09.003









            Volume 10 Issue 2 (2024)                       499                                doi: 10.36922/ijb.1806
   502   503   504   505   506   507   508   509   510   511   512