Page 609 - IJB-10-3
P. 609
International Journal of Bioprinting Five-axis printer for hybrid 3D scaffolds
Ethics approval and consent to participate 10. Gonzalez-Pujana A, Carranza T, Santos-Vizcaino E, et al.
Hybrid 3D printed and electrospun multi-scale hierarchical
Not applicable. polycaprolactone scaffolds to induce bone differentiation.
Pharmaceutics. 2022;14(12).
Consent for publication doi: 10.3390/pharmaceutics14122843
Not applicable. 11. Choi WS, Kim JH, Ahn CB, et al. Development of a multi-
layer skin substitute using human hair keratinic extract-based
Availability of data hybrid 3D printing. Polymers (Basel). 2021;13(16):2584.
doi: 10.3390/polym13162584
Data is available from the corresponding author upon
reasonable request. 12. Altunbek M, Afghah SF, Fallah A, Acar AA, Koc B. Design
and 3D printing of personalized hybrid and gradient
structures for critical size bone defects. ACS Appl Bio Mater.
References 2023;6(5):1873-1885.
doi: 10.1021/acsabm.3c00107
1. Gleadall A, Visscher D, Yang J, Thomas D, Segal J. Review
of additive manufactured tissue engineering scaffolds: 13. Milojević M, Harih G, Vihar B, et al. Hybrid 3D printing of
relationship between geometry and performance. Burns advanced hydrogel-based wound dressings with tailorable
Trauma. 2018;6:19. properties. Pharmaceutics. 2021;13(4):564.
doi: 10.1186/s41038-018-0121-4 doi: 10.3390/pharmaceutics13040564
2. Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov 14. Stögerer J, Baumgartner S, Hochwallner A, Stampfl J. Bio-
S, Khademhosseini A. Gradient biomaterials for soft-to- inspired toughening of composites in 3D-printing. Materials
hard interface tissue engineering. Acta Biomater. 2011;7(4): (Basel). 2020;13(21).
1441-1451. doi: 10.3390/ma13214714
doi: 10.1016/j.actbio.2011.01.011 15. Lee HR, Park JA, Kim S, Jo Y, Kang D, Jung S. 3D
3. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue microextrusion-inkjet hybrid printing of structured human
engineering scaffolds. Bioact Mater. 2020;5(1):82-91. skin equivalents. Bioprinting. 2021;22:e00143.
doi: 10.1016/j.bioactmat.2020.01.004 doi: 10.1016/j.bprint.2021.e00143
4. Truby RL, Lewis JA. Printing soft matter in three dimensions. 16. Jaksa L, Pahr D, Kronreif G, Lorenz A. Development of a
Nature. 2016;540(7633):371-378. multi-material 3D printer for functional anatomic models.
doi: 10.1038/nature21003 Int J Bioprint. 2021;7(4):420.
doi: 10.18063/ijb.v7i4.420
5. Haglin JM, Eltorai AEM, Gil JA, Marcaccio SE, Botero-
Hincapie J, Daniels AH. Patient-specific orthopaedic 17. Tashman JW, Shiwarski DJ, Feinberg AW. Development of
implants. Orthop Surg. 2016;8(4):417-424. a high-performance open-source 3D bioprinter. Sci Rep.
doi: 10.1111/os.12282 2022;12(1):22652.
doi: 10.1038/s41598-022-26809-4
6. Bittner SM, Guo JL, Melchiorri A, Mikos AG. Three-
dimensional printing of multilayered tissue engineering 18. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional
scaffolds. Mater Today. 2018;21(8):861-874. printing of complex biological structures by freeform
doi: 10.1016/J.MATTOD.2018.02.006 reversible embedding of suspended hydrogels. Sci Adv.
2015;1(9):e1500758.
7. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ.
Indirect solid free form fabrication of local and global doi: 10.1126/sciadv.1500758
porous, biomimetic and composite 3D polymer-ceramic 19. Pusch K, Hinton TJ, Feinberg AW. Large volume syringe
scaffolds. Biomaterials. 2003;24(1):181-194. pump extruder for desktop 3D printers. HardwareX.
doi: 10.1016/S0142-9612(02)00276-4 2018;3:49-61.
doi: 10.1016/j.ohx.2018.02.001
8. Lantada AD, Iniesta HA, Garcia-Ruiz JP. Composite
scaffolds for osteochondral repair obtained by combination 20. Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN,
of additive manufacturing, leaching processes and hMSC- Feinberg AW. FRESH 3D bioprinting a full-size model
CM functionalization. Mater Sci Eng C. 2016;59:218-227. of the human heart. ACS Biomater Sci Eng. 2020;6(11):
doi: 10.1016/j.msec.2015.10.015 6453-6459.
doi: 10.1021/acsbiomaterials.0c01133
9. Sänger JC, Schwentenwein M, Bermejo R, Günster
J. Hybridizing lithography-based ceramic additive 21. Khani N, Nadernezhad A, Bartolo P, Koc B. Hierarchical and
manufacturing with two-photon-polymerization. Appl Sci spatial modeling and bio-additive manufacturing of multi-
(Basel). 2023;13(6). material constructs. CIRP Annals. 2017;66(1):229-232.
doi: 10.3390/app13063974 doi: 10.1016/j.cirp.2017.04.132
Volume 10 Issue 3 (2024) 601 doi: 10.36922/ijb.3189

