Page 609 - IJB-10-3
P. 609

International Journal of Bioprinting                                  Five-axis printer for hybrid 3D scaffolds




            Ethics approval and consent to participate         10.  Gonzalez-Pujana A, Carranza T, Santos-Vizcaino E, et al.
                                                                  Hybrid 3D printed and electrospun multi-scale hierarchical
            Not applicable.                                       polycaprolactone scaffolds to induce bone differentiation.
                                                                  Pharmaceutics. 2022;14(12).
            Consent for publication                               doi: 10.3390/pharmaceutics14122843
            Not applicable.                                    11.  Choi WS, Kim JH, Ahn CB, et al. Development of a multi-
                                                                  layer skin substitute using human hair keratinic extract-based
            Availability of data                                  hybrid 3D printing. Polymers (Basel). 2021;13(16):2584.
                                                                  doi: 10.3390/polym13162584
            Data  is  available  from  the  corresponding  author  upon
            reasonable request.                                12.  Altunbek M, Afghah SF, Fallah A, Acar AA, Koc B. Design
                                                                  and 3D printing of personalized hybrid and gradient
                                                                  structures for critical size bone defects. ACS Appl Bio Mater.
            References                                            2023;6(5):1873-1885.
                                                                  doi: 10.1021/acsabm.3c00107
            1.   Gleadall A, Visscher D, Yang J, Thomas D, Segal J. Review
               of additive manufactured tissue engineering scaffolds:   13.  Milojević M, Harih G, Vihar B, et al. Hybrid 3D printing of
               relationship  between  geometry  and  performance.  Burns   advanced hydrogel-based wound dressings with tailorable
               Trauma. 2018;6:19.                                 properties. Pharmaceutics. 2021;13(4):564.
               doi: 10.1186/s41038-018-0121-4                     doi: 10.3390/pharmaceutics13040564
            2.   Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov   14.  Stögerer J, Baumgartner S, Hochwallner A, Stampfl J. Bio-
               S,  Khademhosseini A.  Gradient biomaterials  for  soft-to-  inspired toughening of composites in 3D-printing. Materials
               hard interface tissue engineering. Acta Biomater. 2011;7(4):   (Basel). 2020;13(21).
               1441-1451.                                         doi: 10.3390/ma13214714
               doi: 10.1016/j.actbio.2011.01.011               15.  Lee HR, Park JA, Kim S, Jo Y, Kang D, Jung S. 3D
            3.   Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue   microextrusion-inkjet hybrid printing of structured human
               engineering scaffolds. Bioact Mater. 2020;5(1):82-91.  skin equivalents. Bioprinting. 2021;22:e00143.
               doi: 10.1016/j.bioactmat.2020.01.004               doi: 10.1016/j.bprint.2021.e00143
            4.   Truby RL, Lewis JA. Printing soft matter in three dimensions.   16.  Jaksa L, Pahr D, Kronreif G, Lorenz A. Development of a
               Nature. 2016;540(7633):371-378.                    multi-material 3D printer for functional anatomic models.
               doi: 10.1038/nature21003                           Int J Bioprint. 2021;7(4):420.
                                                                  doi: 10.18063/ijb.v7i4.420
            5.   Haglin JM, Eltorai AEM, Gil JA, Marcaccio SE, Botero-
               Hincapie J, Daniels AH. Patient-specific orthopaedic   17.  Tashman JW, Shiwarski DJ, Feinberg AW. Development of
               implants. Orthop Surg. 2016;8(4):417-424.          a high-performance open-source 3D bioprinter.  Sci Rep.
               doi: 10.1111/os.12282                              2022;12(1):22652.
                                                                  doi: 10.1038/s41598-022-26809-4
            6.   Bittner SM, Guo JL, Melchiorri A, Mikos AG. Three-
               dimensional  printing  of  multilayered  tissue  engineering   18.  Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional
               scaffolds. Mater Today. 2018;21(8):861-874.        printing of complex biological structures by freeform
               doi: 10.1016/J.MATTOD.2018.02.006                  reversible embedding of suspended hydrogels.  Sci Adv.
                                                                  2015;1(9):e1500758.
            7.   Taboas  JM, Maddox RD, Krebsbach PH,  Hollister SJ.
               Indirect solid free form fabrication of local and global      doi: 10.1126/sciadv.1500758
               porous, biomimetic and composite 3D polymer-ceramic   19.  Pusch K, Hinton TJ, Feinberg AW. Large volume syringe
               scaffolds. Biomaterials. 2003;24(1):181-194.       pump extruder for desktop 3D printers.  HardwareX.
               doi: 10.1016/S0142-9612(02)00276-4                 2018;3:49-61.
                                                                  doi: 10.1016/j.ohx.2018.02.001
            8.   Lantada  AD,  Iniesta  HA,  Garcia-Ruiz  JP.  Composite
               scaffolds for osteochondral repair obtained by combination   20.  Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN,
               of additive manufacturing, leaching processes and hMSC-  Feinberg AW. FRESH 3D bioprinting a full-size model
               CM functionalization. Mater Sci Eng C. 2016;59:218-227.  of the human heart.  ACS Biomater Sci Eng. 2020;6(11):
               doi: 10.1016/j.msec.2015.10.015                    6453-6459.
                                                                  doi: 10.1021/acsbiomaterials.0c01133
            9.   Sänger JC, Schwentenwein M, Bermejo R, Günster
               J. Hybridizing lithography-based ceramic additive   21.  Khani N, Nadernezhad A, Bartolo P, Koc B. Hierarchical and
               manufacturing with two-photon-polymerization.  Appl Sci   spatial modeling and bio-additive manufacturing of multi-
               (Basel). 2023;13(6).                               material constructs. CIRP Annals. 2017;66(1):229-232.
               doi: 10.3390/app13063974                           doi: 10.1016/j.cirp.2017.04.132


            Volume 10 Issue 3 (2024)                       601                                doi: 10.36922/ijb.3189
   604   605   606   607   608   609   610   611   612   613   614