Page 610 - IJB-10-3
P. 610

International Journal of Bioprinting                                  Five-axis printer for hybrid 3D scaffolds




            22.  Hong F, Hodges S, Myant C, Boyle DE. Open5x: accessible   34.  Sankar S, O’Neill K, Bagot D’Arc M, et al. Clinical use of the
               5-axis 3D printing and conformal slicing.  Ext Abstr Hum   self-assembling  peptide  RADA16:  a  review  of  current  and
               Factors Computing Syst. 2022.                      future trends in biomedicine. Front Bioeng Biotechnol. 2021;9.
               doi: 10.1145/3491101.3519782                       doi: 10.3389/fbioe.2021.679525
            23.  Sheng YT, Liong S, Wang SY, Gan YS. 3D printing on   35.  Wong KC. 3D-printed patient-specific applications in
               freeform surface:  real-time and  accurate  3D dynamic   orthopedics. Orthop Res Rev. 2016;8:57-66.
               dense surface reconstruction with HoloLens and      doi: 10.2147/ORR.S99614
               displacement  measurement  sensors.  Adv Mech Eng.   36.  Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K.
               2023;15(1):168781322211484.                        The utility of 3D printing for surgical planning and patient-
               doi: 10.1177/16878132221148404
                                                                  specific implant design for complex spinal pathologies: case
            24.  Arango I, Cifuentes C. Design to achieve accuracy in ink-jet   report. J Neurosurg. 2017;26(4):513-518.
               cylindrical printing machines. Machines. 2019;7(1):6.     doi: 10.13140/RG.2.2.18087.75686
               doi: 10.3390/machines7010006
                                                               37.  Lawrence  S.  Developable  surfaces:  their  history  and
            25.  Arango  I,  Bonil  L,  Posada  D,  Arcila  J.  Prediction  of  a   application. Nexus Netw J. 2011;13(3):701-714.
               flying droplet landing over a non-flat substrates for ink-jet      doi: 10.1007/s00004-011-0087-z
               applications. Int J Interact Des Manuf. 2019;13:967-980  38.  Baselga S, Olsen M. Approximations, errors, and
               doi: 10.1007/s12008-019-00547-w
                                                                  misconceptions in the use of map projections. Math Probl
            26.  Fechtig D. Robot-based direct digital printing on freeform   Eng. 2021;2021:1-12.
               surfaces. In: Zapka W, ed.  Inkjet Printing in Industry.      doi: 10.1155/2021/1094602
               Weinheim: Wiley-VCH; 2022:1269-1297.            39.  Roach BL, Hung CT, Cook JL, Ateshian GA, Tan AR.
               doi: 10.1002/9783527828074.CH55
                                                                  Fabrication of tissue engineered osteochondral grafts
            27.  Thalheim  R,  Willert  A,  Mitra  D,  Zichner  R.  Novel  and   for restoring the articular surface of diarthrodial joints.
               efficient methodology for drop placement accuracy testing   Methods. 2015;84:103-108.
               of robot-guided inkjet printing onto 3D objects. Machines.      doi: 10.1016/j.ymeth.2015.03.008
               2023;11(5):568.                                 40.  Woodfield TBF, Guggenheim M, von Rechenberg B,
               doi: 10.3390/machines11050568
                                                                  Riesle J, van Blitterswijk CA, Wedler V. Rapid prototyping
            28.  Shen H, Liu B, Liu S, Fu J. Five-axis freeform surface color   of anatomically shaped, tissue-engineered implants for
               printing technology based on offset curve path planning   restoring congruent articulating surfaces in small joints. Cell
               method. Appl Sci (Basel). 2020;10(5):1716.         Prolif. 2009;42(4):485-497.
               doi: 10.3390/app10051716                           doi: 10.1111/j.1365-2184.2009.00608.x
            29.  Gazeau JP, Said Z, Ramírez-Torres J. A novel 5-axis robot for   41.  Guilak F, Estes BT, Moutos FT. Functional tissue engineering
               printing high resolution pictures from media on 3D wide   of articular cartilage for biological joint resurfacing-The
               surfaces. Proceedings of the IEEE International Conference on   2021 Elizabeth Winston Lanier Kappa Delta Award. J Orthop
               Industrial Technology. 2009:1-6.                   Res. 2022;40(8):1721-1734.
               doi: 10.1109/ICIT.2009.4939735                     doi: 10.1002/jor.25223
            30.  Urasinska-Wojcik B, Chilton N, Todd P, et al. Integrated   42.  Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky
               manufacture of polymer and conductive tracks for real-  M, Lode A. 3D bioprinting of osteochondral tissue
               world applications. Addit Manuf. 2019;29:100777.   substitutes  –  in  vitro-chondrogenesis  in  multi-layered
               doi: 10.1016/j.addma.2019.06.028                   mineralized constructs. Sci Rep. 2020;10(1):8277.
                                                                  doi: 10.1038/s41598-020-65050-9
            31.  Moroni L, Boland T, Burdick JA, et al. Biofabrication: a
               guide to technology and terminology.  Trends Biotechnol.   43.  Fudalej P, Katsaros C, Dudkiewicz Z, et al. Dental arch
               2018;36(4):384-402.                                relationships following palatoplasty for cleft lip and palate
               doi: 10.1016/j.tibtech.2017.10.015                 repair. J Dent Res. 2012;91(1):47-51.
                                                                  doi: 10.1177/0022034511425674
            32.  Kainz M, Perak S, Stubauer G, et al. Additive and lithographic
               manufacturing of biomedical scaffold structures using a   44.  Figueroa AA, Murphy J, Tragos C. Intra-lesional injection
               versatile thiol-ene photocurable resin.  Polymers (Basel).   of triamcinolone to palatoplasty scar to aid reversal of
               2024;16(5):655.                                    transverse maxillary relapse after orthognathic surgery.  J
               doi: 10.3390/polym16050655                         Craniofac Surg. 2022;33(4):e416-e418.
                                                                  doi: 10.1097/SCS.0000000000008347
            33.  Arosio P, Owczarz M, Wu H, Butté A, Morbidelli M.
               End-to-end self-assembly of RADA 16-I nanofibrils   45.  Ren Y, Fan L, Alkildani S, et al. Barrier membranes for
               in  aqueous  solutions.  Biophys  J.  2012;102(7):   guided bone regeneration (GBR): a focus on recent advances
               1617-1626.                                         in collagen membranes. Int J Mol Sci. 2022;23(23):14987.
               doi: 10.1016/j.bpj.2012.03.012                     doi: 10.3390/ijms232314987

            Volume 10 Issue 3 (2024)                       602                                doi: 10.36922/ijb.3189
   605   606   607   608   609   610   611   612   613   614   615