Page 610 - IJB-10-3
P. 610
International Journal of Bioprinting Five-axis printer for hybrid 3D scaffolds
22. Hong F, Hodges S, Myant C, Boyle DE. Open5x: accessible 34. Sankar S, O’Neill K, Bagot D’Arc M, et al. Clinical use of the
5-axis 3D printing and conformal slicing. Ext Abstr Hum self-assembling peptide RADA16: a review of current and
Factors Computing Syst. 2022. future trends in biomedicine. Front Bioeng Biotechnol. 2021;9.
doi: 10.1145/3491101.3519782 doi: 10.3389/fbioe.2021.679525
23. Sheng YT, Liong S, Wang SY, Gan YS. 3D printing on 35. Wong KC. 3D-printed patient-specific applications in
freeform surface: real-time and accurate 3D dynamic orthopedics. Orthop Res Rev. 2016;8:57-66.
dense surface reconstruction with HoloLens and doi: 10.2147/ORR.S99614
displacement measurement sensors. Adv Mech Eng. 36. Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K.
2023;15(1):168781322211484. The utility of 3D printing for surgical planning and patient-
doi: 10.1177/16878132221148404
specific implant design for complex spinal pathologies: case
24. Arango I, Cifuentes C. Design to achieve accuracy in ink-jet report. J Neurosurg. 2017;26(4):513-518.
cylindrical printing machines. Machines. 2019;7(1):6. doi: 10.13140/RG.2.2.18087.75686
doi: 10.3390/machines7010006
37. Lawrence S. Developable surfaces: their history and
25. Arango I, Bonil L, Posada D, Arcila J. Prediction of a application. Nexus Netw J. 2011;13(3):701-714.
flying droplet landing over a non-flat substrates for ink-jet doi: 10.1007/s00004-011-0087-z
applications. Int J Interact Des Manuf. 2019;13:967-980 38. Baselga S, Olsen M. Approximations, errors, and
doi: 10.1007/s12008-019-00547-w
misconceptions in the use of map projections. Math Probl
26. Fechtig D. Robot-based direct digital printing on freeform Eng. 2021;2021:1-12.
surfaces. In: Zapka W, ed. Inkjet Printing in Industry. doi: 10.1155/2021/1094602
Weinheim: Wiley-VCH; 2022:1269-1297. 39. Roach BL, Hung CT, Cook JL, Ateshian GA, Tan AR.
doi: 10.1002/9783527828074.CH55
Fabrication of tissue engineered osteochondral grafts
27. Thalheim R, Willert A, Mitra D, Zichner R. Novel and for restoring the articular surface of diarthrodial joints.
efficient methodology for drop placement accuracy testing Methods. 2015;84:103-108.
of robot-guided inkjet printing onto 3D objects. Machines. doi: 10.1016/j.ymeth.2015.03.008
2023;11(5):568. 40. Woodfield TBF, Guggenheim M, von Rechenberg B,
doi: 10.3390/machines11050568
Riesle J, van Blitterswijk CA, Wedler V. Rapid prototyping
28. Shen H, Liu B, Liu S, Fu J. Five-axis freeform surface color of anatomically shaped, tissue-engineered implants for
printing technology based on offset curve path planning restoring congruent articulating surfaces in small joints. Cell
method. Appl Sci (Basel). 2020;10(5):1716. Prolif. 2009;42(4):485-497.
doi: 10.3390/app10051716 doi: 10.1111/j.1365-2184.2009.00608.x
29. Gazeau JP, Said Z, Ramírez-Torres J. A novel 5-axis robot for 41. Guilak F, Estes BT, Moutos FT. Functional tissue engineering
printing high resolution pictures from media on 3D wide of articular cartilage for biological joint resurfacing-The
surfaces. Proceedings of the IEEE International Conference on 2021 Elizabeth Winston Lanier Kappa Delta Award. J Orthop
Industrial Technology. 2009:1-6. Res. 2022;40(8):1721-1734.
doi: 10.1109/ICIT.2009.4939735 doi: 10.1002/jor.25223
30. Urasinska-Wojcik B, Chilton N, Todd P, et al. Integrated 42. Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky
manufacture of polymer and conductive tracks for real- M, Lode A. 3D bioprinting of osteochondral tissue
world applications. Addit Manuf. 2019;29:100777. substitutes – in vitro-chondrogenesis in multi-layered
doi: 10.1016/j.addma.2019.06.028 mineralized constructs. Sci Rep. 2020;10(1):8277.
doi: 10.1038/s41598-020-65050-9
31. Moroni L, Boland T, Burdick JA, et al. Biofabrication: a
guide to technology and terminology. Trends Biotechnol. 43. Fudalej P, Katsaros C, Dudkiewicz Z, et al. Dental arch
2018;36(4):384-402. relationships following palatoplasty for cleft lip and palate
doi: 10.1016/j.tibtech.2017.10.015 repair. J Dent Res. 2012;91(1):47-51.
doi: 10.1177/0022034511425674
32. Kainz M, Perak S, Stubauer G, et al. Additive and lithographic
manufacturing of biomedical scaffold structures using a 44. Figueroa AA, Murphy J, Tragos C. Intra-lesional injection
versatile thiol-ene photocurable resin. Polymers (Basel). of triamcinolone to palatoplasty scar to aid reversal of
2024;16(5):655. transverse maxillary relapse after orthognathic surgery. J
doi: 10.3390/polym16050655 Craniofac Surg. 2022;33(4):e416-e418.
doi: 10.1097/SCS.0000000000008347
33. Arosio P, Owczarz M, Wu H, Butté A, Morbidelli M.
End-to-end self-assembly of RADA 16-I nanofibrils 45. Ren Y, Fan L, Alkildani S, et al. Barrier membranes for
in aqueous solutions. Biophys J. 2012;102(7): guided bone regeneration (GBR): a focus on recent advances
1617-1626. in collagen membranes. Int J Mol Sci. 2022;23(23):14987.
doi: 10.1016/j.bpj.2012.03.012 doi: 10.3390/ijms232314987
Volume 10 Issue 3 (2024) 602 doi: 10.36922/ijb.3189

