Page 59 - IJB-4-1
P. 59

3D Printing of hydrogel composite systems: Recent advances in technology for tissue engineering

               2113–2121. http://dx.doi.org/10.1089/ten.tea.2011.0019  3D printing of mineral-polymer bone substitutes based
           88.  Panhuis M I H, Heurtematte A, Small W R, et al., 2007,   on sodium alginate and calcium phosphate. Beilstein J
               Inkjet printed water sensitive transparent films from natural   Nanotechnol, 7(1): 1794–1799. http://dx.doi.org/10.3762/
               gum-carbon nanotube composites. Soft Matter, 3(7): 840–  bjnano.7.172
               843. http://dx.doi.org/10.1039/b704368f         100.  Rawat K, Agarwal S, Tyagi A, et al., 2014, Aspect ratio
           89.  Heo D N, Castro N J, Lee S J, et al., 2017, Enhanced bone   dependent cytotoxicity and antimicrobial properties of
               tissue regeneration using a 3D printed microstructure   nanoclay. Appl Biochem Biotechnol, 174(3): 936–944. http://
               incorporated with a hybrid nano hydrogel. Nanoscale, 9(16):   dx.doi.org/10.1007/s12010-014-0983-2
               5055–5062. http://dx.doi.org/10.1039/c6nr09652b  101.  Mourchid A, Delville A, Lambard J, et al., 1995, Phase
           90.  Zhu W, Holmes B, Glazer R I, et al., 2016, 3D printed   diagram of colloidal dispersions of anisotropic charged
               nanocomposite matrix for the study of breast cancer bone   particles: Equilibrium properties, structure, and rheology of
               metastasis. Nanomedicine, 12(1): 69–79. http://dx.doi.  laponite suspensions. Langmuir, 11(6): 1942–1950. http://
               org/10.1016/j.nano.2015.09.010                     dx.doi.org/10.1021/la00006a020
           91.  Castro N J, O'Brien J and Zhang L G, 2015, Integrating biologically   102.  Su D, Jiang L, Chen X, et al., 2016, Enhancing the gelation
               inspired nanomaterials and table-top stereolithography for 3D   and bioactivity of injectable silk fibroin hydrogel with
               printed biomimetic osteochondral scaffolds. Nanoscale, 7(33):   laponite nanoplatelets. ACS Appl Mater Interfaces, 8(15):
               14010–14022. http://dx.doi.org/10.1039/c5nr03425f  9619–9628. http://dx.doi.org/10.1021/acsami.6b00891
           92.  Gladman A S, Matsumoto E A, Nuzzo R G, et al., 2016,   103.  Liu Y, Meng H, Konst S, et al., 2014, Injectable dopamine-
               Biomimetic 4D printing. Nat Mater, 15(4): 413–418. http://  modified poly (ethylene glycol) nanocomposite hydrogel
               dx.doi.org/10.1038/NMAT4544                        with enhanced adhesive property and bioactivity. ACS
           93.  Narayanan L K, Huebner P, Fisher M B, et al., 2016,   Appl Mater Interfaces, 6(19): 16982–16992. http://dx.doi.
               3D-Bioprinting of polylactic acid (PLA) nanofiber-alginate   org/10.1021/am504566v
               hydrogel bioink containing human adipose-derived stem   104.  Demirtaş T T, Irmak G and Gümüşderelioğlu M, 2017,
               cells. ACS Biomater Sci Eng, 2(10): 1732–1742. http://  A bioprintable form of chitosan hydrogel for bone tissue
               dx.doi.org/10.1021/acsbiomaterials.6b00196         engineering. Biofabrication, 9(3): 035003. http://dx.doi.
           94.  Agrawal A, Rahbar N and Calvert P D, 2013, Strong fiber-  org/10.1088/1758-5090/aa7b1d
               reinforced hydrogel. Acta Biomaterialia, 9(2): 5313–5318.   105.  Diogo G, Gaspar V, Serra I, et al., 2014, Manufacture of
               http://dx.doi.org/10.1016/j.actbio.2012.10.011     β-TCP/alginate scaffolds through a Fab@ home model for
           95.  Bakarich S E, Gorkin R, Panhuis M I H, et al., 2014, Three-  application in bone tissue engineering. Biofabrication, 6(2):
               dimensional printing fiber reinforced hydrogel composites.   025001. http://dx.doi.org/10.1088/1758-5082/6/2/025001
               ACS Appl Mater Interfaces, 6(18): 15998–16006. http://  106.  Kang M-H, Jang T-S, Jung H-D, et al., 2016, Poly (ether
               dx.doi.org/10.1021/am503878d                       imide)-silica hybrid coatings for tunable corrosion behavior
           96.  Jin Y, Liu C, Chai W, et al., 2017, Self-Supporting nanoclay   and improved biocompatibility of magnesium implants.
               as internal scaffold mterial for direct printing of soft   Bioact Mater, 11(3): 035003. http://dx.doi.org/10.1088/1748-
               hydrogelcomposite structures in air. ACS Appl Mater Interfaces,   6041/11/3/035003
               9(20):17456–17465. http://dx.doi.org/10.1021/acsami.7b03613  107.  Lee H, Kim Y, Kim S, et al., 2014, Mineralized biomimetic
           97.  Zhai X, Ma Y, Hou C, et al., 2017, 3D-printed high strength   collagen/alginate/silica composite scaffolds fabricated
               bioactive supramolecular polymer/clay nanocomposite   by a low-temperature bio-plotting process for hard tissue
               hydrogel scaffold for bone regeneration. ACS Biomater   regeneration: fabrication, characterisation and in vitro
               Sci Eng, 3(6): 1109–1118. http://dx.doi.org/10.1021/  cellular activities. J Mater Chem B Mater Biol Med, 2(35):
               acsbiomaterials.7b00224                            5785–5798. http://dx.doi.org/10.1039/C4TB00931B
           98.  Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development   108.  Wang X, Tolba E, Schröder H C, et al., 2014, Effect of bioglass
               of a clay based bioink for 3D cell printing for skeletal   on growth and biomineralization of SaOS-2 cells in hydrogel
               application.  Biofabrication,  9(3).  http://dx.doi.  after 3D cell bioprinting. PLoS One, 9(11): e112497. http://
               org/10.1088/1758-5090/aa7e96                       dx.doi.org/10.1371/journal.pone.0112497
           99.  Egorov A A, Fedotov A Y, Mironov A V, et al., 2016,   109.  Huey D J, Hu J C and Athanasiou K A, 2012, Unlike bone,

           26                          International Journal of Bioprinting (2018)–Volume 4, Issue 1
   54   55   56   57   58   59   60   61   62   63   64