Page 59 - IJB-4-1
P. 59
3D Printing of hydrogel composite systems: Recent advances in technology for tissue engineering
2113–2121. http://dx.doi.org/10.1089/ten.tea.2011.0019 3D printing of mineral-polymer bone substitutes based
88. Panhuis M I H, Heurtematte A, Small W R, et al., 2007, on sodium alginate and calcium phosphate. Beilstein J
Inkjet printed water sensitive transparent films from natural Nanotechnol, 7(1): 1794–1799. http://dx.doi.org/10.3762/
gum-carbon nanotube composites. Soft Matter, 3(7): 840– bjnano.7.172
843. http://dx.doi.org/10.1039/b704368f 100. Rawat K, Agarwal S, Tyagi A, et al., 2014, Aspect ratio
89. Heo D N, Castro N J, Lee S J, et al., 2017, Enhanced bone dependent cytotoxicity and antimicrobial properties of
tissue regeneration using a 3D printed microstructure nanoclay. Appl Biochem Biotechnol, 174(3): 936–944. http://
incorporated with a hybrid nano hydrogel. Nanoscale, 9(16): dx.doi.org/10.1007/s12010-014-0983-2
5055–5062. http://dx.doi.org/10.1039/c6nr09652b 101. Mourchid A, Delville A, Lambard J, et al., 1995, Phase
90. Zhu W, Holmes B, Glazer R I, et al., 2016, 3D printed diagram of colloidal dispersions of anisotropic charged
nanocomposite matrix for the study of breast cancer bone particles: Equilibrium properties, structure, and rheology of
metastasis. Nanomedicine, 12(1): 69–79. http://dx.doi. laponite suspensions. Langmuir, 11(6): 1942–1950. http://
org/10.1016/j.nano.2015.09.010 dx.doi.org/10.1021/la00006a020
91. Castro N J, O'Brien J and Zhang L G, 2015, Integrating biologically 102. Su D, Jiang L, Chen X, et al., 2016, Enhancing the gelation
inspired nanomaterials and table-top stereolithography for 3D and bioactivity of injectable silk fibroin hydrogel with
printed biomimetic osteochondral scaffolds. Nanoscale, 7(33): laponite nanoplatelets. ACS Appl Mater Interfaces, 8(15):
14010–14022. http://dx.doi.org/10.1039/c5nr03425f 9619–9628. http://dx.doi.org/10.1021/acsami.6b00891
92. Gladman A S, Matsumoto E A, Nuzzo R G, et al., 2016, 103. Liu Y, Meng H, Konst S, et al., 2014, Injectable dopamine-
Biomimetic 4D printing. Nat Mater, 15(4): 413–418. http:// modified poly (ethylene glycol) nanocomposite hydrogel
dx.doi.org/10.1038/NMAT4544 with enhanced adhesive property and bioactivity. ACS
93. Narayanan L K, Huebner P, Fisher M B, et al., 2016, Appl Mater Interfaces, 6(19): 16982–16992. http://dx.doi.
3D-Bioprinting of polylactic acid (PLA) nanofiber-alginate org/10.1021/am504566v
hydrogel bioink containing human adipose-derived stem 104. Demirtaş T T, Irmak G and Gümüşderelioğlu M, 2017,
cells. ACS Biomater Sci Eng, 2(10): 1732–1742. http:// A bioprintable form of chitosan hydrogel for bone tissue
dx.doi.org/10.1021/acsbiomaterials.6b00196 engineering. Biofabrication, 9(3): 035003. http://dx.doi.
94. Agrawal A, Rahbar N and Calvert P D, 2013, Strong fiber- org/10.1088/1758-5090/aa7b1d
reinforced hydrogel. Acta Biomaterialia, 9(2): 5313–5318. 105. Diogo G, Gaspar V, Serra I, et al., 2014, Manufacture of
http://dx.doi.org/10.1016/j.actbio.2012.10.011 β-TCP/alginate scaffolds through a Fab@ home model for
95. Bakarich S E, Gorkin R, Panhuis M I H, et al., 2014, Three- application in bone tissue engineering. Biofabrication, 6(2):
dimensional printing fiber reinforced hydrogel composites. 025001. http://dx.doi.org/10.1088/1758-5082/6/2/025001
ACS Appl Mater Interfaces, 6(18): 15998–16006. http:// 106. Kang M-H, Jang T-S, Jung H-D, et al., 2016, Poly (ether
dx.doi.org/10.1021/am503878d imide)-silica hybrid coatings for tunable corrosion behavior
96. Jin Y, Liu C, Chai W, et al., 2017, Self-Supporting nanoclay and improved biocompatibility of magnesium implants.
as internal scaffold mterial for direct printing of soft Bioact Mater, 11(3): 035003. http://dx.doi.org/10.1088/1748-
hydrogelcomposite structures in air. ACS Appl Mater Interfaces, 6041/11/3/035003
9(20):17456–17465. http://dx.doi.org/10.1021/acsami.7b03613 107. Lee H, Kim Y, Kim S, et al., 2014, Mineralized biomimetic
97. Zhai X, Ma Y, Hou C, et al., 2017, 3D-printed high strength collagen/alginate/silica composite scaffolds fabricated
bioactive supramolecular polymer/clay nanocomposite by a low-temperature bio-plotting process for hard tissue
hydrogel scaffold for bone regeneration. ACS Biomater regeneration: fabrication, characterisation and in vitro
Sci Eng, 3(6): 1109–1118. http://dx.doi.org/10.1021/ cellular activities. J Mater Chem B Mater Biol Med, 2(35):
acsbiomaterials.7b00224 5785–5798. http://dx.doi.org/10.1039/C4TB00931B
98. Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development 108. Wang X, Tolba E, Schröder H C, et al., 2014, Effect of bioglass
of a clay based bioink for 3D cell printing for skeletal on growth and biomineralization of SaOS-2 cells in hydrogel
application. Biofabrication, 9(3). http://dx.doi. after 3D cell bioprinting. PLoS One, 9(11): e112497. http://
org/10.1088/1758-5090/aa7e96 dx.doi.org/10.1371/journal.pone.0112497
99. Egorov A A, Fedotov A Y, Mironov A V, et al., 2016, 109. Huey D J, Hu J C and Athanasiou K A, 2012, Unlike bone,
26 International Journal of Bioprinting (2018)–Volume 4, Issue 1

