Page 61 - IJB-4-1
P. 61

3D Printing of hydrogel composite systems: Recent advances in technology for tissue engineering

           134.  Gao B, Yang Q Z, Zhao X, et al., 2016, 4D bioprinting for   339–346. http://dx.doi.org/10.1016/j.jconrel.2005.10.017
               biomedical applications. Trends Biotechnol, 34(9): 746–756.   138.  Khoo Z X, Teoh J E M, Liu Y, et al., 2015, 3D printing
               http://dx.doi.org/10.10164.tibtech.2016.03.004     of smart materials: A review on recent progresses in 4D
           135.  Weiss R A, Izzo E and Mandelbaum S, 2008, New design of   printing. Virtual Phys Prototyp, 10(3): 103–122. http://
               shape memory polymers: Mixtures of an elastomeric ionomer   dx.doi.org/10.1080/17452759.2015.1097054
               and low molar mass fatty acids and their salts. Macromolecules,   139.  He Y, Wu Y, Fu J Z, et al., 2016, Developments of 3D
               41(9): 2978–2980. http://dx.doi.org/10.1021/ma8001774  printing microfluidics and applications in chemistry and
           136.  Leist S K and Zhou J, 2016, Current status of 4D printing   biology: A review. Electroanalysis, 28(8): 1658–1678. http://
               technology and the potential of light-reactive smart materials   dx.doi.org/10.1002/elan.201600043
               as 4D printable materials. Virtual Phys Prototyp, 11(4): 249–  140.  Lee V K, Lanzi A M, Ngo H, et al., 2014, Generation of
               262. http://dx.doi.org/10.1080/17452759.2016.1198630  multi-scale vascular network system within 3D hydrogel
           137.  He H Y, Guan J J and Lee J L, 2006, An oral delivery device   using 3D bio-printing technology. Cell Mol Bioeng, 7(3):
               based on self-folding hydrogels. J Control Release, 110(2):   460–472. http://dx.doi.org/10.1007/s12195-014-0340-0




























































           28                          International Journal of Bioprinting (2018)–Volume 4, Issue 1
   56   57   58   59   60   61   62   63   64   65   66