Page 60 - IJB-4-1
P. 60
Jang T-S, et al.
cartilage regeneration remains elusive. Science, 338(6109): 122. Pereira R Fand Bartolo P J, 2015, 3D bioprinting of photocross-
917–921. http://dx.doi.org/10.1126/science.1222454 linkable hydrogel constructs. J Appl Polym Sci, 132(48):
110. Bartnikowski M, Akkineni A R, Gelinsky M, et al., 2016, 42458.http://dx.doi.org/10.1002/App.42458
A hydrogel model incorporating 3D-plotted hydroxyapatite 123. Kirchmajer D M, Gorkin R and Panhuis M I H, 2015, An
for osteochondral tissue engineering. Materials, 9(4): 285. overview of the suitability of hydrogel-forming polymers
http://dx.doi.org/10.3390/ma9040285 for extrusion-based 3D-printing. J Mater Chem B Mater
111. Kundu J, Shim J H, Jang J, et al., 2015, An additive Biol Med, 3(20): 4105–4117. http://dx.doi.org/10.1039/
manufacturingbased PCL–alginate–chondrocyte bioprinted c5tb00393h
scaffold for cartilage tissue engineering. J Tissue Eng Regen 124. Chirag Khatiwala R L, Benjamin Shepherd, Scott Dorfman,
Med, 9(11): 1286–1297. http://dx.doi.org/10.1002/term.1682 et al., 2012, 3D cell bioprinting for regenerative medicine
112. Xu T, Binder K W, Albanna M Z, et al., 2012, Hybrid printing research and therapies. Gene Ther Regul, 7(1): 1230004.
of mechanically and biologically improved constructs for http://dx.doi.org/10.1142/S1568558611000301
cartilage tissue engineering applications. Biofabrication, 5(1): 125. Wang Z J, Jin X, Dai R, et al., 2016, An ultrafast hydrogel
015001. http://dx.doi.org/10.1088/1758-5082/5/1/015001 photocrosslinking method for direct laser bioprinting.
113. Wei J, Wang J, Su S, et al., 2015, 3D printing of an extremely RSC Adv, 6(25): 21099-21104. http://dx.doi.org/10.1039/
tough hydrogel. RSC Adv, 5(99): 81324–81329. http://dx.doi. c5ra24910d
org/10.1039/C5RA16362E 126. Armstrong J P K, Burke M, Carter B M, et al., 2016, 3D
114. Sugihara H, Toda S, Miyabara S, et al., 1991, Reconstruction bioprinting using a templated porous bioink. Adv Healthc
of the skin in three-dimensional collagen gel matrix culture. Mater, 5(14): 1724–1730. http://dx.doi.org/10.1002/
In Vitro Cell Dev Biol Anim, 27(2): 142-146. http://dx.doi. adhm.201600022
org/10.1007/BF02631000 127. Cui X F, Breitenkamp K, Finn M G, et al., 2012, Direct
115. Dorsett-Martin W A, 2004, Rat models of skin wound human cartilage repair using three-dimensional bioprinting
healing: A review. Wound Repair Regen, 12(6): 591–599. technology. Tissue Eng Part A, 18(11 –12): 1304–1312.
http://dx.doi.org/10.1111/j.1067-1927.2004.12601.x http://dx.doi.org/10.1089/ten.tea.2011.0543
116. Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted 128. Fedorovich N E, Oudshoorn M H, van Geemen D, et al.,
amniotic fluid-derived stem cells accelerate healing of large 2009, The effect of photopolymerization on stem cells
skin wounds. Stem Cells Transl Med, 1(11): 792–802. http:// embedded in hydrogels. Biomaterials, 30(3): 344–353.
dx.doi.org/10.5966/sctm.2012-0088 http://dx.doi.org/10.1016/j.biomaterials.2008.09.037
117. Sayyar S, Murray E, Thompson B, et al., 2015, Processable 129. Folkman J and Hochberg M, 1973, Self-regulation of growth
conducting graphene/chitosan hydrogels for tissue in three dimensions. J Exp Med, 138(4): 745–753.
engineering. J Mater Chem B Mater Biol Med, 3(3): 481– 130. Li S, Xiong Z, Wang X, et al., 2009, Direct fabrication
490. http://dx.doi.org/10.1039/C4TB01636J of a hybrid cell/hydrogel construct by a double-nozzle
118. Suh J-K and Matthew H W, 2000, Application of chitosan- assembling technology. J Bioact Compat Polym, 24(3): 249-
based polysaccharide biomaterials in cartilage tissue engineering: 265. http://dx.doi.org/10.1016/j.biomaterials.2016.07.038
A review. Biomaterials, 21(24): 2589–2598. http://dx.doi. 131. Jia W, Gungor-Ozkerim P S, Zhang Y S, et al., 2016, Direct
org/10.1016/S0142-9612(00)00126-5 3D bioprinting of perfusable vascular constructs using
119. Knowlton S, Yenilmez B, Anand S, et al., 2017, Photocrosslinking- a blend bioink. Biomaterials, 106: 58–68. http://dx.doi.
based bioprinting: Examining crosslinking schemes. Bioprinting, org/10.1016/j.biomaterials.2016.07.038
5: 10–18. https:// dx.doi.org/10.1016/j.bprint.2017.03.001 132. Skardal A, Zhang J and Prestwich G D, 2010, Bioprinting vessel-
120. Nair K, Gandhi M, Khalil S, et al., 2009, Characterization like constructs using hyaluronan hydrogels crosslinked with
of cell viability during bioprinting processes. Biotechnol J, tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24):
4(8): 1168–1177. http://dx.doi.org/10.1002/biot.200900004 6173–6181. http://dx.doi.org/10.1016/j.biomaterials.2010.04.045
121. Arslan-Yildiz A, El Assal R, Chen P, et al., 2016, Towards 133. Dolati F, Yu Y, Zhang Y, et al., 2014, In vitro evaluation
artificial tissue models: Past, present, and future of 3D of carbon-nanotube-reinforced bioprintable vascular
bioprinting. Biofabrication, 8(1): 014103.http://dx.doi. conduits. Nanotechnology, 25(14): 145101. http://dx.doi.
org/10.1088/1758-5090/8/1/014103 org/10.1088/0957-4484/25/14/145101
International Journal of Bioprinting (2018)–Volume 4, Issue 1 27

