Page 60 - IJB-4-1
P. 60

Jang T-S, et al.

               cartilage regeneration remains elusive. Science, 338(6109):   122.  Pereira R Fand Bartolo P J, 2015, 3D bioprinting of photocross-
               917–921. http://dx.doi.org/10.1126/science.1222454  linkable hydrogel constructs. J Appl Polym Sci, 132(48):
           110.  Bartnikowski M, Akkineni A R, Gelinsky M, et al., 2016,   42458.http://dx.doi.org/10.1002/App.42458
               A hydrogel model incorporating 3D-plotted hydroxyapatite   123.  Kirchmajer D M, Gorkin R and Panhuis M I H, 2015, An
               for osteochondral tissue engineering. Materials, 9(4): 285.   overview of the suitability of hydrogel-forming polymers
               http://dx.doi.org/10.3390/ma9040285                for extrusion-based 3D-printing. J Mater Chem B Mater
           111.  Kundu J, Shim J H, Jang J, et al., 2015, An additive   Biol Med, 3(20): 4105–4117. http://dx.doi.org/10.1039/
               manufacturingbased PCL–alginate–chondrocyte bioprinted   c5tb00393h
               scaffold for cartilage tissue engineering. J Tissue Eng Regen   124.  Chirag Khatiwala R L, Benjamin Shepherd, Scott Dorfman,
               Med, 9(11): 1286–1297. http://dx.doi.org/10.1002/term.1682  et al., 2012, 3D cell bioprinting for regenerative medicine
           112.  Xu T, Binder K W, Albanna M Z, et al., 2012, Hybrid printing   research and therapies. Gene Ther Regul, 7(1): 1230004.
               of mechanically and biologically improved constructs for   http://dx.doi.org/10.1142/S1568558611000301
               cartilage tissue engineering applications. Biofabrication, 5(1):   125.  Wang Z J, Jin X, Dai R, et al., 2016, An ultrafast hydrogel
               015001. http://dx.doi.org/10.1088/1758-5082/5/1/015001  photocrosslinking method for direct laser bioprinting.
           113.  Wei J, Wang J, Su S, et al., 2015, 3D printing of an extremely   RSC Adv, 6(25): 21099-21104. http://dx.doi.org/10.1039/
               tough hydrogel. RSC Adv, 5(99): 81324–81329. http://dx.doi.  c5ra24910d
               org/10.1039/C5RA16362E                          126.  Armstrong J P K, Burke M, Carter B M, et al., 2016, 3D
           114.  Sugihara H, Toda S, Miyabara S, et al., 1991, Reconstruction   bioprinting using a templated porous bioink. Adv Healthc
               of the skin in three-dimensional collagen gel matrix culture.   Mater, 5(14): 1724–1730. http://dx.doi.org/10.1002/
               In Vitro Cell Dev Biol Anim, 27(2): 142-146. http://dx.doi.  adhm.201600022
               org/10.1007/BF02631000                          127.  Cui X F, Breitenkamp K, Finn M G, et al., 2012, Direct
           115.  Dorsett-Martin W A, 2004, Rat models of skin wound   human cartilage repair using three-dimensional bioprinting
               healing: A review. Wound Repair Regen, 12(6): 591–599.   technology. Tissue Eng Part A, 18(11 –12): 1304–1312.
               http://dx.doi.org/10.1111/j.1067-1927.2004.12601.x  http://dx.doi.org/10.1089/ten.tea.2011.0543
           116.  Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted   128.  Fedorovich N E, Oudshoorn M H, van Geemen D, et al.,
               amniotic fluid-derived stem cells accelerate healing of large   2009, The effect of photopolymerization on stem cells
               skin wounds. Stem Cells Transl Med, 1(11): 792–802. http://  embedded in hydrogels. Biomaterials, 30(3): 344–353.
               dx.doi.org/10.5966/sctm.2012-0088                  http://dx.doi.org/10.1016/j.biomaterials.2008.09.037
           117.  Sayyar S, Murray E, Thompson B, et al., 2015, Processable   129.  Folkman J and Hochberg M, 1973, Self-regulation of growth
               conducting  graphene/chitosan  hydrogels  for  tissue   in three dimensions. J Exp Med, 138(4): 745–753.
               engineering. J Mater Chem B Mater Biol Med, 3(3): 481–  130.  Li S, Xiong Z, Wang X, et al., 2009, Direct fabrication
               490. http://dx.doi.org/10.1039/C4TB01636J          of a hybrid cell/hydrogel construct by a double-nozzle
           118.  Suh J-K and Matthew H W, 2000, Application of chitosan-  assembling technology. J Bioact Compat Polym, 24(3): 249-
               based polysaccharide biomaterials in cartilage tissue engineering:   265. http://dx.doi.org/10.1016/j.biomaterials.2016.07.038
               A review. Biomaterials, 21(24): 2589–2598. http://dx.doi.  131.  Jia W, Gungor-Ozkerim P S, Zhang Y S, et al., 2016, Direct
               org/10.1016/S0142-9612(00)00126-5                  3D bioprinting of perfusable vascular constructs using
           119.  Knowlton S, Yenilmez B, Anand S, et al., 2017, Photocrosslinking-  a blend bioink. Biomaterials, 106: 58–68. http://dx.doi.
               based bioprinting: Examining crosslinking schemes. Bioprinting,   org/10.1016/j.biomaterials.2016.07.038
               5: 10–18. https:// dx.doi.org/10.1016/j.bprint.2017.03.001  132.  Skardal A, Zhang J and Prestwich G D, 2010, Bioprinting vessel-
           120.  Nair K, Gandhi M, Khalil S, et al., 2009, Characterization   like constructs using hyaluronan hydrogels crosslinked with
               of cell viability during bioprinting processes. Biotechnol J,   tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24):
               4(8): 1168–1177. http://dx.doi.org/10.1002/biot.200900004  6173–6181. http://dx.doi.org/10.1016/j.biomaterials.2010.04.045
           121.  Arslan-Yildiz A, El Assal R, Chen P, et al., 2016, Towards   133.  Dolati F, Yu Y, Zhang Y, et al., 2014, In vitro evaluation
               artificial tissue models: Past, present, and future of 3D   of carbon-nanotube-reinforced bioprintable vascular
               bioprinting. Biofabrication, 8(1): 014103.http://dx.doi.  conduits. Nanotechnology, 25(14): 145101. http://dx.doi.
               org/10.1088/1758-5090/8/1/014103                   org/10.1088/0957-4484/25/14/145101

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 1        27
   55   56   57   58   59   60   61   62   63   64   65