Page 55 - IJB-4-1
P. 55

3D Printing of hydrogel composite systems: Recent advances in technology for tissue engineering

           and serve as a platform to design innovative combinations   9.   Gaharwar A K, Peppas N A and Khademhosseini A, 2014,
           of materials and 3D printing techniques for emerging   Nanocomposite hydrogels for biomedical applications.
           applications, such as cancer modeling and organ-on-a-chip   Biotechnol Bioeng, 111(3): 441–453. http://dx.doi.org/10.1002/
           models.
                                                                  bit.25160
           Conflict of Interest and Funding                    10.  Xu K, Wang J H, Chen Q, et al., 2008, Spontaneous volume

           No conflict of interest was reported by all authors. This   transition of polyampholyte nanocomposite hydrogels based on
           research was supported by AcRF Tier 1 grant 2017-      pure electrostatic interaction. J Colloid Interface Sci, 321(2):
           T1-001-246 (RG51/17) from Ministry of Education of     272–278. http://dx.doi.org/10.1016/j.jcis.2008.02.024
           Singapore, and Basic Science Research Program (No.
           2015R1D1A1A01057311 & 2017R1A6A3A03008914)          11.  Kabiri K, Omidian H, Zohuriaan-Mehr M J, et al., 2011,
           through the National Research Foundation of Korea      Superabsorbent hydrogel composites and nanocomposites:
           (NRF) funded by the Ministry of Science, ICT & Future   A review. Polym Compos, 32(2): 277–289. http://dx.doi.
           Planning.                                              org/10.1002/pc.21046

           References                                          12.  Thoniyot P, Tan M J, Karim A A, et al., 2015, Nanoparticle-
                                                                  Hydrogel composites: Concept, design, and applications of
           1.   Wang X, Jiang M, Zhou Z W, et al., 2017, 3D printing of   these promising, multi-functional materials. Adv Sci, 2(1–2).
               polymer matrix composites: A review and prospective.   http://dx.doi.org/10.1002/Advs.201400010
               Compos B Eng, 110: 442–458. http://dx.doi.org/10.1016/  13.  Lee J W, Kim S Y, Kim S S, et al., 1999, Synthesis and
               j.compositesb.2016.11.034                          characteristics of interpenetrating polymer network hydrogel
           2.   Chua C K and Leong K F, 3D printing and additive   composed of chitosan and poly(acrylic acid). J Appl Polym
               manufacturing  :  Principles  and  applications,  4   ed.   Sci, 73(1): 113–120. http://dx.doi.org/10.1002/(SICI)1097-
                                                      th
               Singapore: World Scientific Publishing; 2015.      4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D
           3.   Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A review   14.  Ehrburger P and Donnet J B, 1980, Interface in composite-
               of trends and limitations in hydrogel-rapid prototyping for   materials. Philos Trans A Math Phys Eng Sci, 294(1411):
               tissue engineering. Biomaterials, 33(26): 6020–6041. http://  495–505. http://dx.doi.org/10.1098/rsta.1980.0059
               dx.doi.org/10.1016/j.biomaterials.2012.04.050   15.  Jeong S H, Koh Y H, Kim S W, et al., 2016, Strong and
           4.   Ballyns J J, Gleghorn J P, Niebrzydowski V, et al., 2008,   biostable hyaluronic acid-calcium phosphate nanocomposite
               Image-guided tissue engineering of anatomically shaped   hydrogel via in situ precipitation process. Biomacromolecules,
               implants via MRI and micro-CT using injection molding.   17(3): 841–851. http://dx.doi.org/10.1021/acs.biomac.5b01557
               Tissue Eng Part A, 14(7): 1195–1202. http://dx.doi.  16.  Wust S, Godla M E, Muller R, et al., 2014, Tunable hydrogel
               org/10.1089/ten.tea.2007.0186                      composite with two-step processing in combination with
           5.   Chia H N and Wu B M, 2015, Recent advances in 3D   innovative hardware upgrade for cell-based three-dimensional
               printing of biomaterials. J Biol Eng, 9(1): 4 http://dx.doi.  bioprinting. Acta Biomater, 10(2): 630–640. http://dx.doi.
               org/10.1186/S13036-015-0001-4                      org/10.1016/j.actbio.2013.10.016
           6.   Seyednejad H, Gawlitta D, Kuiper R V, et al., 2012, In vivo   17.  Duan B, Hockaday L A, Kang K H, et al., 2013, 3D Bioprinting
               biocompatibility and biodegradation of 3D-printed porous   of heterogeneous aortic valve conduits with alginate/gelatin
               scaffolds based on a hydroxyl-functionalized poly(epsilon-  hydrogels. J Biomed Mater Res A, 101(5): 1255–1264. http://
               caprolactone). Biomaterials, 33(17): 4309–4318. http://  dx.doi.org/10.1002/jbm.a.34420
               dx.doi.org/10.1016/j.biomaterials.2012.03.002   18.   Melchels F P W, Feijen J and Grijpma D W, 2010, A review
           7.   Wu G H and Hsu S H, 2015, Review: Polymeric-Based 3D   on stereolithography and its applications in biomedical
               printing for tissue engineering. J Med Bioeng, 35(3): 285–  engineering. Biomaterials, 31(24): 6121–6130. http://dx.doi.
               292. http://dx.doi.org/10.1007/s40846-015-0038-3   org/10.1016/j.biomaterials.2010.04.050
           8.   Utech S and Boccaccini A R, 2016, A review of hydrogel-  19.  Bertsch A, Jiguet S, Bernhard P, et al., 2003, Microstere-
               based composites for biomedical applications: Enhancement   olithography: A review. Rapid Prototyping Technologies, 758:
               of hydrogel properties by addition of rigid inorganic fillers. J   3–15.
               Mater Sci, 51(1): 271–310. http://dx.doi.org/10.1007/s10853-  20.  Beluze L, Bertsch A and Renaud P, 1999, Microstereolitho-
               015-9382-5                                         graphy: A new process to build complex 3D objects. Design,


           22                          International Journal of Bioprinting (2018)–Volume 4, Issue 1
   50   51   52   53   54   55   56   57   58   59   60