Page 56 - IJB-4-1
P. 56

Jang T-S, et al.

               Test, and Microfabrication of Mems and Moems, Pts 1 and 2,   precise extrusion. Scr Mater, 45(7): 773–779. http://dx.doi.
               3680: 808–817. http://dx.doi.org/10.1117/12.341277  org/10.1016/S1359-6462(01)01094-6
           21.  Choi J S, Kang H W, Lee I H, et al., 2009, Development of   33.  Greulich M, Greul M and Pintat T, 1995, Fast, functional
               micro-stereolithography technology using a UV lamp and   prototypes via multiphase jet solidification. Rapid Prototyp J,
               optical fiber. Int J Adv Manuf Technol, 41(3–4): 281–286.   1(1): 20–25. http://dx.doi.org/10.1108/13552549510146649
               http://dx.doi.org/10.1007/s00170-008-1461-1     34.  Shor L, Güçeri S, Chang R, et al., 2009, Precision extruding
           22.  Bertsch A, Renaud P, Vogt C, et al., 2000, Rapid prototyping   deposition (PED) fabrication of polycaprolactone (PCL)
               of small size objects. Rapid Prototyp J, 6(4): 259–266. http://  scaffolds for bone tissue engineering. Biofabrication, 1(1):
               dx.doi.org/10.1108/13552540010373362               015003. http://dx.doi.org/10.1088/1758-5082/1/1/015003
           23.  Sun C, Fang N, Wu D M, et al., 2005, Projection micro-  35.  Torres J, Cotelo J, Karl J, et al., 2015, Mechanical property
               stereolithography using digital micro-mirror dynamic mask.   optimization of FDM PLA in shear with multiple objectives.
               Sens Actuators A Phys, 121(1): 113–120. http://dx.doi.  JOM, 67(5): 1183–1193. http://dx.doi.org/10.1007/s11837-
               org/10.1016/j.sna.2004.12.011                      015-1367-y
           24.  Ambrosio L, Biomedical composites, 2  ed. UK: Woodhead   36.  Yeong W Y, Chua C K, Leong K F, et al., 2004, Rapid
                                           nd
               Publishing; 2010.                                  prototyping in tissue engineering: Challenges and potential.
           25.  Maruo Sand Ikuta K, 2002, Submicron stereolithography for   Trends Biotechnol,  22(12):  643–652.  http://dx.doi.
               the production of freely movable mechanisms by using single-  org/10.1016/j.tibtech.2004.10.004
               photon polymerization. Sens Actuators A Phys, 100(1): 70–76.    37.  Gates R D, Baghdasarian G and Muscatine L, 1992,
               http://dx.doi.org/10.1016/S0924-4247(02)00043-2    Temperature stress causes host-cell detachment in symbiotic
           26.  Lee K S, Kim R H, Yang D Y, et al., 2008, Advances in   cnidarians-implications for coral bleaching. Biol Bull,
               3D nano/microfabrication using two-photon initiated   182(3): 324–332. http://dx.doi.org/10.2307/1542252
               polymerization. Prog Polym Sci, 33(6): 631–681. http://  38.  Landers R and Mülhaupt R, 2000, Desktop manufacturing
               dx.doi.org/10.1016/j.progpolymsci.2008.01.001      of complex objects, prototypes and biomedical scaffolds
           27.  Weiss T, Hildebrand G, Schade R, et al., 2009, Two-Photon   by means of computer-assisted design combined with
               polymerization for microfabrication of three-dimensional   computer-guided 3D plotting of polymers and reactive
               scaffolds for tissue engineering application. Eng Life Sci,   oligomers. Macromol Mater Eng, 282(1): 17–21. http://
               9(5): 384–390. http://dx.doi.org/10.1002/elsc.200900002  dx.doi.org/10.1002/1439-2054(20001001)282:1<17::AID-
           28.  Ostendorf A and Chichkov B N, 2006, Two-photon polymer-  MAME17>3.0.CO;2-8
               ization: A new approach to micromachining. Photonics   39.  Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D
               Spectra, 40(10): 72–80.                            printing of gelatin methacrylamide cell-laden tissue-engineered
           29.  Hutmacher D W, Sittinger M and Risbud M V, 2004,   constructs with high cell viability. Biomaterials, 35(1): 49–62.
               Scaffold-based tissue engineering: Rationale for computer-  http://dx.doi.org/10.1016/j.biomaterials.2013.09.078
               aided design and solid free-form fabrication systems. Trends   40.  Luo Y, Lode A, Akkineni A R, et al., 2015, Concentrated
               Biotechnol, 22(7): 354–362. http://dx.doi.org/10.1016/  gelatin/alginate composites for fabrication of predesigned
               j.tibtech.2004.05.006                              scaffolds with a favorable cell response by 3D plotting.
           30.  Bikas H, Stavropoulos P and Chryssolouris G, 2016, Additive   RSC Adv, 5(54): 43480–43488. http://dx.doi.org/10.1039/
               manufacturing methods and modelling approaches: A critical   C5RA04308E
               review. Int J Adv Manuf Technol, 83(1–4): 389–405. http://  41.  Akkineni A R, Luo Y, Schumacher M, et al., 2015, 3D plotting
               dx.doi.org/10.1007/s00170-015-7576-2               of growth factor loaded calcium phosphate cement scaffolds.
           31.  Anitha R, Arunachalam S and Radhakrishnan P, 2001,   Acta Biomater, 27: 264–274. http://dx.doi.org/10.1016/
               Critical parameters influencing the quality of prototypes   j.actbio.2015.08.036
               in fused deposition modelling. J Mater Process Technol,   42.  Yilgor P, Sousa R A, Reis R L, et al., 3D plotted PCL scaffolds
               118(1):  385–388.  http://dx.doi.org/10.1016/S0924-  for stem cell based bone tissue engineering, Macromol
               0136(01)00980-3                                    Symp, 2008. Wiley Online Library, 269:92–99. http://dx.doi.
           32.  Xiong Z, Yan Y, Zhang R, et al., 2001, Fabrication of porous   org/10.1002/masy.200850911
               poly (L-lactic acid) scaffolds for bone tissue engineering via   43.  Landers R and Mulhaupt R, 2000, Desktop manufacturing

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 1        23
   51   52   53   54   55   56   57   58   59   60   61