Page 56 - IJB-4-1
P. 56
Jang T-S, et al.
Test, and Microfabrication of Mems and Moems, Pts 1 and 2, precise extrusion. Scr Mater, 45(7): 773–779. http://dx.doi.
3680: 808–817. http://dx.doi.org/10.1117/12.341277 org/10.1016/S1359-6462(01)01094-6
21. Choi J S, Kang H W, Lee I H, et al., 2009, Development of 33. Greulich M, Greul M and Pintat T, 1995, Fast, functional
micro-stereolithography technology using a UV lamp and prototypes via multiphase jet solidification. Rapid Prototyp J,
optical fiber. Int J Adv Manuf Technol, 41(3–4): 281–286. 1(1): 20–25. http://dx.doi.org/10.1108/13552549510146649
http://dx.doi.org/10.1007/s00170-008-1461-1 34. Shor L, Güçeri S, Chang R, et al., 2009, Precision extruding
22. Bertsch A, Renaud P, Vogt C, et al., 2000, Rapid prototyping deposition (PED) fabrication of polycaprolactone (PCL)
of small size objects. Rapid Prototyp J, 6(4): 259–266. http:// scaffolds for bone tissue engineering. Biofabrication, 1(1):
dx.doi.org/10.1108/13552540010373362 015003. http://dx.doi.org/10.1088/1758-5082/1/1/015003
23. Sun C, Fang N, Wu D M, et al., 2005, Projection micro- 35. Torres J, Cotelo J, Karl J, et al., 2015, Mechanical property
stereolithography using digital micro-mirror dynamic mask. optimization of FDM PLA in shear with multiple objectives.
Sens Actuators A Phys, 121(1): 113–120. http://dx.doi. JOM, 67(5): 1183–1193. http://dx.doi.org/10.1007/s11837-
org/10.1016/j.sna.2004.12.011 015-1367-y
24. Ambrosio L, Biomedical composites, 2 ed. UK: Woodhead 36. Yeong W Y, Chua C K, Leong K F, et al., 2004, Rapid
nd
Publishing; 2010. prototyping in tissue engineering: Challenges and potential.
25. Maruo Sand Ikuta K, 2002, Submicron stereolithography for Trends Biotechnol, 22(12): 643–652. http://dx.doi.
the production of freely movable mechanisms by using single- org/10.1016/j.tibtech.2004.10.004
photon polymerization. Sens Actuators A Phys, 100(1): 70–76. 37. Gates R D, Baghdasarian G and Muscatine L, 1992,
http://dx.doi.org/10.1016/S0924-4247(02)00043-2 Temperature stress causes host-cell detachment in symbiotic
26. Lee K S, Kim R H, Yang D Y, et al., 2008, Advances in cnidarians-implications for coral bleaching. Biol Bull,
3D nano/microfabrication using two-photon initiated 182(3): 324–332. http://dx.doi.org/10.2307/1542252
polymerization. Prog Polym Sci, 33(6): 631–681. http:// 38. Landers R and Mülhaupt R, 2000, Desktop manufacturing
dx.doi.org/10.1016/j.progpolymsci.2008.01.001 of complex objects, prototypes and biomedical scaffolds
27. Weiss T, Hildebrand G, Schade R, et al., 2009, Two-Photon by means of computer-assisted design combined with
polymerization for microfabrication of three-dimensional computer-guided 3D plotting of polymers and reactive
scaffolds for tissue engineering application. Eng Life Sci, oligomers. Macromol Mater Eng, 282(1): 17–21. http://
9(5): 384–390. http://dx.doi.org/10.1002/elsc.200900002 dx.doi.org/10.1002/1439-2054(20001001)282:1<17::AID-
28. Ostendorf A and Chichkov B N, 2006, Two-photon polymer- MAME17>3.0.CO;2-8
ization: A new approach to micromachining. Photonics 39. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D
Spectra, 40(10): 72–80. printing of gelatin methacrylamide cell-laden tissue-engineered
29. Hutmacher D W, Sittinger M and Risbud M V, 2004, constructs with high cell viability. Biomaterials, 35(1): 49–62.
Scaffold-based tissue engineering: Rationale for computer- http://dx.doi.org/10.1016/j.biomaterials.2013.09.078
aided design and solid free-form fabrication systems. Trends 40. Luo Y, Lode A, Akkineni A R, et al., 2015, Concentrated
Biotechnol, 22(7): 354–362. http://dx.doi.org/10.1016/ gelatin/alginate composites for fabrication of predesigned
j.tibtech.2004.05.006 scaffolds with a favorable cell response by 3D plotting.
30. Bikas H, Stavropoulos P and Chryssolouris G, 2016, Additive RSC Adv, 5(54): 43480–43488. http://dx.doi.org/10.1039/
manufacturing methods and modelling approaches: A critical C5RA04308E
review. Int J Adv Manuf Technol, 83(1–4): 389–405. http:// 41. Akkineni A R, Luo Y, Schumacher M, et al., 2015, 3D plotting
dx.doi.org/10.1007/s00170-015-7576-2 of growth factor loaded calcium phosphate cement scaffolds.
31. Anitha R, Arunachalam S and Radhakrishnan P, 2001, Acta Biomater, 27: 264–274. http://dx.doi.org/10.1016/
Critical parameters influencing the quality of prototypes j.actbio.2015.08.036
in fused deposition modelling. J Mater Process Technol, 42. Yilgor P, Sousa R A, Reis R L, et al., 3D plotted PCL scaffolds
118(1): 385–388. http://dx.doi.org/10.1016/S0924- for stem cell based bone tissue engineering, Macromol
0136(01)00980-3 Symp, 2008. Wiley Online Library, 269:92–99. http://dx.doi.
32. Xiong Z, Yan Y, Zhang R, et al., 2001, Fabrication of porous org/10.1002/masy.200850911
poly (L-lactic acid) scaffolds for bone tissue engineering via 43. Landers R and Mulhaupt R, 2000, Desktop manufacturing
International Journal of Bioprinting (2018)–Volume 4, Issue 1 23

