Page 58 - IJB-4-1
P. 58

Jang T-S, et al.

           66.  Boland T, Tao X, Damon B J, et al., 2007, Drop-on-demand   of complex tissue engineering scaffolds. Polymers, 8(5):
               printing of cells and materials for designer tissue constructs.   170. http://dx.doi.org/10.3390/polym8050170
               Mater Sci Eng C Mater Biol Appl, 27(3): 372–376. https://   77.  Boere K W, Blokzijl M M, Visser J,et al.,2015, Biofabrication
               dx.doi.org/10.1016/j.msec.2006.05.047              of reinforced 3D-scaffolds using two-component hydrogels.
           67.  Sun J, Ng J H, Fuh Y H, et al., 2009, Comparison of   J Mater Chem B Mater Biol Med, 3(46): 9067–9078. http://
               micro-dispensing performance between micro-valve and   dx.doi.org/10.1039/C5TB01645B
               piezoelectric printhead. Microsyst Technol, 15(9): 1437–  78.  Censi R, Schuurman W, Malda J, et al., 2011, A printable
               1448. https:// dx.doi.org/10.1007/s00542-009-0905-3  photopolymerizable thermosensitive p (HPMAm-lactate)-
           68.  Zustiak S P and Leach J B, 2010, Hydrolytically degradable   PEG hydrogel for tissue engineering. Adv Funct Mater, 21(10):
               poly (ethylene glycol) hydrogel scaffolds with tunable   1833–1842. http://dx.doi.org/10.1002/adfm.201002428
               degradation and mechanical properties. Biomacromolecules,   79.  Osterbur L, 2013, 3D printing of hyaluronic acid scaffolds
               11(5): 1348–1357. https:// dx.doi.org/10.1021/bm100137q  for tissue engineering applications [Internet]. Available from:
           69.  Killion J A, Geever L M, Devine D M, et al., 2014, Compressive   http://hdl.handle.net/2142/44207
               strength and bioactivity properties of photopolymerizable hybrid   80.  Wang X, Cui T, Yan Y, et al., 2009, Peroneal nerve regeneration
               composite hydrogels for bone tissue engineering. Int J Polym   using a unique bilayer polyurethane-collagen guide conduit.
               Mater Po, 63(13): 641–650. https:// dx.doi.org/10.1080/00914037.  J Bioact Compat Polym, 24(2): 109–127. http://dx.doi.
               2013.854238                                        org/10.1177/0883911508101183
           70.  Bakarich S E, Gorkin R, Gately R, et al., 2017, 3D printing   81.  Mogas-Soldevila L, Duro-Royo J and Oxman N, 2014,
               of tough hydrogel composites with spatially varying   Water-based robotic fabrication: Large-Scale additive
               materials properties. Addit Manuf, 14: 24–30. https:// dx.doi.  manufacturing of functionally graded hydrogel composites
               org/10.1016/j.addma.2016.12.003                    via multichamber extrusion. 3D Print Addit Manuf, 1(3):
           71.  Zhao L, Lee V K, Yoo S-S, et al., 2012, The integration of   141–151. http://dx.doi.org/10.1089/3dp.2014.0014
               3-D cell printing and mesoscopic fluorescence molecular   82.  Shie M-Y, Chang W-C, Wei L-J, et al., 2017, 3D printing of
               tomography of vascular constructs within thick hydrogel   cytocompatible water-based light-cured polyurethane with
               scaffolds. Biomaterials, 33(21): 5325–5332. http://dx.doi.  hyaluronic acid for cartilage tissue engineering applications.
               org/10.1016/j.biomaterials.2012.04.004             Materials,  10(2):  136.  http://dx.doi.org/10.3390/
           72.  Hong S, Sycks D, Chan H F, et al., 2015, 3D printing of highly   ma10020136
               stretchable and tough hydrogels into complex, cellularized   83.  Wang X H, Tolba E, Schroder H C, et al., 2014, Effect of
               structures. Adv Mater, 27(27): 4035–4040. http://dx.doi.  bioglass on growth and biomineralization of Saos-2 cells in
               org/10.1002/adma.201501099                         hydrogel after 3D cell bioprinting. Plos One, 9(11): e112497
           73.  Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting   http://dx.doi.org/10.1371/journal.pone.0112497
               human chondrocytes with nanocellulose–alginate bioink for   84.  Sayyar S, Gambhir S, Chung J, et al., 2017, 3D printable
               cartilage tissue engineering applications. Biomacromolecules,   conducting hydrogels containing chemically converted
               16(5):  1489–1496.  http://dx.doi.org/10.1021/acs.  graphene. Nanoscale, 9(5): 2038–2050. http://dx.doi.
               biomac.5b00188                                     org/10.1039/c6nr07516a
           74.  Rutz A L, Hyland K E, Jakus A E, et al., 2015, A multimaterial   85.  Demirtas T T, Irmak G and Gumusderelioglu M, 2017,
               bioink method for 3D printing tunable, cell-compatible   A bioprintable form of chitosan hydrogel for bone tissue
               hydrogels. AdvMater, 27(9): 1607–1614. http://dx.doi.  engineering. Biofabrication, 9(3): 035003. http://dx.doi.
               org/10.1002/adma.201405076                         org/10.1088/1758-5090/Aa7b1d
           75.  Xu M, Wang X, Yan Y, et al., 2010, An cell-assembly derived   86.  Skardal A, Zhang J X, McCoard L, et al., 2010, Dynamically
               physiological 3D model of the metabolic syndrome, based on   crosslinked gold nanoparticle–Hyaluronan hydrogels.
               adipose-derived stromal cells and a gelatin/alginate/fibrinogen   Adv Mater, 22(42): 4736. http://dx.doi.org/10.1002/
               matrix. Biomaterials, 31(14): 3868–3877. http://dx.doi.  adma.201001436
               org/10.1016/j.biomaterials.2010.01.111          87.  Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011,
           76.  Akkineni A R, Ahlfeld T, Funk A, et al., 2016, Highly   Distinct tissue formation by heterogeneous printing of osteo-
               concentrated alginate-gellan gum composites for 3D plotting   and endothelial progenitor cells. Tissue Eng Part A, 17(15–16):

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 1        25
   53   54   55   56   57   58   59   60   61   62   63