Page 58 - IJB-4-1
P. 58
Jang T-S, et al.
66. Boland T, Tao X, Damon B J, et al., 2007, Drop-on-demand of complex tissue engineering scaffolds. Polymers, 8(5):
printing of cells and materials for designer tissue constructs. 170. http://dx.doi.org/10.3390/polym8050170
Mater Sci Eng C Mater Biol Appl, 27(3): 372–376. https:// 77. Boere K W, Blokzijl M M, Visser J,et al.,2015, Biofabrication
dx.doi.org/10.1016/j.msec.2006.05.047 of reinforced 3D-scaffolds using two-component hydrogels.
67. Sun J, Ng J H, Fuh Y H, et al., 2009, Comparison of J Mater Chem B Mater Biol Med, 3(46): 9067–9078. http://
micro-dispensing performance between micro-valve and dx.doi.org/10.1039/C5TB01645B
piezoelectric printhead. Microsyst Technol, 15(9): 1437– 78. Censi R, Schuurman W, Malda J, et al., 2011, A printable
1448. https:// dx.doi.org/10.1007/s00542-009-0905-3 photopolymerizable thermosensitive p (HPMAm-lactate)-
68. Zustiak S P and Leach J B, 2010, Hydrolytically degradable PEG hydrogel for tissue engineering. Adv Funct Mater, 21(10):
poly (ethylene glycol) hydrogel scaffolds with tunable 1833–1842. http://dx.doi.org/10.1002/adfm.201002428
degradation and mechanical properties. Biomacromolecules, 79. Osterbur L, 2013, 3D printing of hyaluronic acid scaffolds
11(5): 1348–1357. https:// dx.doi.org/10.1021/bm100137q for tissue engineering applications [Internet]. Available from:
69. Killion J A, Geever L M, Devine D M, et al., 2014, Compressive http://hdl.handle.net/2142/44207
strength and bioactivity properties of photopolymerizable hybrid 80. Wang X, Cui T, Yan Y, et al., 2009, Peroneal nerve regeneration
composite hydrogels for bone tissue engineering. Int J Polym using a unique bilayer polyurethane-collagen guide conduit.
Mater Po, 63(13): 641–650. https:// dx.doi.org/10.1080/00914037. J Bioact Compat Polym, 24(2): 109–127. http://dx.doi.
2013.854238 org/10.1177/0883911508101183
70. Bakarich S E, Gorkin R, Gately R, et al., 2017, 3D printing 81. Mogas-Soldevila L, Duro-Royo J and Oxman N, 2014,
of tough hydrogel composites with spatially varying Water-based robotic fabrication: Large-Scale additive
materials properties. Addit Manuf, 14: 24–30. https:// dx.doi. manufacturing of functionally graded hydrogel composites
org/10.1016/j.addma.2016.12.003 via multichamber extrusion. 3D Print Addit Manuf, 1(3):
71. Zhao L, Lee V K, Yoo S-S, et al., 2012, The integration of 141–151. http://dx.doi.org/10.1089/3dp.2014.0014
3-D cell printing and mesoscopic fluorescence molecular 82. Shie M-Y, Chang W-C, Wei L-J, et al., 2017, 3D printing of
tomography of vascular constructs within thick hydrogel cytocompatible water-based light-cured polyurethane with
scaffolds. Biomaterials, 33(21): 5325–5332. http://dx.doi. hyaluronic acid for cartilage tissue engineering applications.
org/10.1016/j.biomaterials.2012.04.004 Materials, 10(2): 136. http://dx.doi.org/10.3390/
72. Hong S, Sycks D, Chan H F, et al., 2015, 3D printing of highly ma10020136
stretchable and tough hydrogels into complex, cellularized 83. Wang X H, Tolba E, Schroder H C, et al., 2014, Effect of
structures. Adv Mater, 27(27): 4035–4040. http://dx.doi. bioglass on growth and biomineralization of Saos-2 cells in
org/10.1002/adma.201501099 hydrogel after 3D cell bioprinting. Plos One, 9(11): e112497
73. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting http://dx.doi.org/10.1371/journal.pone.0112497
human chondrocytes with nanocellulose–alginate bioink for 84. Sayyar S, Gambhir S, Chung J, et al., 2017, 3D printable
cartilage tissue engineering applications. Biomacromolecules, conducting hydrogels containing chemically converted
16(5): 1489–1496. http://dx.doi.org/10.1021/acs. graphene. Nanoscale, 9(5): 2038–2050. http://dx.doi.
biomac.5b00188 org/10.1039/c6nr07516a
74. Rutz A L, Hyland K E, Jakus A E, et al., 2015, A multimaterial 85. Demirtas T T, Irmak G and Gumusderelioglu M, 2017,
bioink method for 3D printing tunable, cell-compatible A bioprintable form of chitosan hydrogel for bone tissue
hydrogels. AdvMater, 27(9): 1607–1614. http://dx.doi. engineering. Biofabrication, 9(3): 035003. http://dx.doi.
org/10.1002/adma.201405076 org/10.1088/1758-5090/Aa7b1d
75. Xu M, Wang X, Yan Y, et al., 2010, An cell-assembly derived 86. Skardal A, Zhang J X, McCoard L, et al., 2010, Dynamically
physiological 3D model of the metabolic syndrome, based on crosslinked gold nanoparticle–Hyaluronan hydrogels.
adipose-derived stromal cells and a gelatin/alginate/fibrinogen Adv Mater, 22(42): 4736. http://dx.doi.org/10.1002/
matrix. Biomaterials, 31(14): 3868–3877. http://dx.doi. adma.201001436
org/10.1016/j.biomaterials.2010.01.111 87. Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011,
76. Akkineni A R, Ahlfeld T, Funk A, et al., 2016, Highly Distinct tissue formation by heterogeneous printing of osteo-
concentrated alginate-gellan gum composites for 3D plotting and endothelial progenitor cells. Tissue Eng Part A, 17(15–16):
International Journal of Bioprinting (2018)–Volume 4, Issue 1 25

