Page 57 - IJB-4-1
P. 57
3D Printing of hydrogel composite systems: Recent advances in technology for tissue engineering
of complex objects, prototypes and biomedical scaffolds https://dx.doi.org/10.1080/17452750802551298
by means of computer-assisted design combined with 54. Lim T, Bang C, Chian K, et al., 2008, Development of cryogenic
computer-guided 3D plotting of polymers and reactive prototyping for tissue engineering. Virtual Phys Prototyp, 3(1):
oligomers. Macromol Mater Eng, 282(9): 17–21. http:// 25–31. https://dx.doi.org/10.1080/17452750701799303
dx.doi.org/10.1002/1439-2054(20001001)282:1<17::Aid- 55. Bang Pham C, Fai Leong K, Chiun Lim T, et al., 2008,
Mame17>3.0.Co;2-8 Rapid freeze prototyping technique in bio-plotters for tissue
44. Smay J E, Gratson G M, Shepherd R F, et al., 2002, Directed scaffold fabrication. Rapid Prototyp J, 14(4): 246–253.
colloidal assembly of 3D periodic structures. Adv Mater, https://dx.doi.org/10.1108/13552540810896193
14(18): 1279–1283. 56. Lu L, Zhang Q, Wootton D, et al., 2010, A novel sucrose
45. Ahn B Y, Duoss E B, Motala M J, et al., 2009, Omnidir- porogen-based solid freeform fabrication system for bone
ectional printing of flexible, stretchable, and spanning silver scaffold manufacturing. Rapid Prototyp J, 16(5): 365–376.
microelectrodes. Science, 323(5921): 1590–1593. https:// https://dx.doi.org/10.1108/13552541011065768
dx.doi.org/10.1126/science.1168375 57. Cima M, Sachs E, Fan T, et al., Three-dimensional printing
46. Vozzi G, Previti A, De Rossi D, et al., 2002, Microsyringe- techniques. US patent 5387380, 1995 July 2.
based deposition of two-dimensional and three-dimensional 58. Mei J, Lovell M Rand Mickle M H, 2005, Formulation and
polymer scaffolds with a well-defined geometry for processing of novel conductive solution inks in continuous
application to tissue engineering. Tissue Eng, 8(6): 1089– inkjet printing of 3-D electric circuits. IEEE Trans Compon
1098. https://dx.doi.org/10.1089/107632702320934182 Packaging Manuf Technol, 28(3): 265–273. https://dx.doi.
47. Tartarisco G, Gallone G, Carpi F, et al., 2009, Polyurethane org/10.1109/TEPM.2005.852542
unimorph bender microfabricated with pressure assisted 59. Saunders R E, Gough J E and Derby B, 2008, Delivery of
microsyringe (PAM) for biomedical applications. Mater Sci human fibroblast cells by piezoelectric drop-on-demand
Eng C Mater Biol Appl, 29(6): 1835–1841. https://dx.doi. inkjet printing. Biomaterials, 29(2): 193–203. https://dx.doi.
org/10.1016/j.msec.2009.02.017 org/10.1016/j.biomaterials.2007.09.032
48. Xiong Z, Yan Y, Wang S, et al., 2002, Fabrication of porous 60. Nakamura M, Kobayashi A, Takagi F, et al., 2005, Biocompatible
scaffolds for bone tissue engineering via low-temperature inkjet printing technique for designed seeding of individual
deposition. Scr Mater, 46(11): 771–776. https://dx.doi. living cells. Tissue Eng, 11(11–12): 1658–1666. https://dx.doi.
org/10.1016/S1359-6462(02)00071-4 org/10.1089/ten.2005.11.1658
49. Liu L, Xiong Z, Zhang R, et al., 2009, A novel osteochondral 61. Cui X, Dean D, Ruggeri Z M, et al., 2010, Cell damage
scaffold fabricated via multi-nozzle low-temperature evaluation of thermal inkjet printed Chinese hamster ovary
deposition manufacturing. J Bioact Compat Polym, 24(1): cells. Biotechnol Bioeng, 106(6): 963–969. https://dx.doi.
18–30. https://dx.doi.org/10.1177/0883911509102347 org/10.1002/bit.22762
50. Vadnere M, Amidon G, Lindenbaum S, et al., 1984, 62. Leukers B, Gülkan H, Irsen S H, et al., 2005, Hydroxyapatite
Thermodynamic studies on the gel-sol transition of some scaffolds for bone tissue engineering made by 3D printing. J
pluronic polyols. Int J Pharm, 22(2–3): 207–218. https:// MATER SCI-MATER M, 16(12): 1121–1124. https://dx.doi.
dx.doi.org/10.1016/0378-5173(84)90022-X org/10.1007/s10856-005-4716-5
51. Kim J Y and Cho D-W, 2009, Blended PCL/PLGA scaffold 63. Inzana J A, Olvera D, Fuller S M, et al., 2014, 3D printing
fabrication using multi-head deposition system. Microelectron of composite calcium phosphate and collagen scaffolds for
Eng, 86(4): 1447–1450. https://dx.doi.org/10.1016/ bone regeneration. Biomaterials, 35(13): 4026–4034. https://
j.mee.2008.11.026 dx.doi.org/10.1016/j.biomaterials.2014.01.064
52. Domingos M, Dinucci D, Cometa S, et al., 2009, Polycaprolactone 64. Levy A, Miriyev A, Elliott A, et al., 2017, Additive manufacturing
scaffolds fabricated via bioextrusion for tissue engineering of complex-shaped graded TiC/steel composites. Mater Design,
applications. Int J Biomater, 2009(1687–8787) : 239643. https:// 118: 198–203. https://dx.doi.org/10.1016/j.matdes.2017.01.024
dx.doi.org/10.1155/2009/239643 65. Pfister A, Landers R, Laib A, et al., 2004, Biofunctional
53. Lam C, Olkowski R, Swieszkowski W, et al., 2008, Mechanical rapid prototyping for tissue-engineering applications: 3D
and in vitro evaluations of composite PLDLLA/TCP scaffolds bioplotting versus 3D printing. J Polym Sci Pol Chem, 42(3):
for bone engineering. Virtual Phys Prototyp, 3(4): 193–197. 624–638. https:// dx.doi.org/10.1002/pola.10807
24 International Journal of Bioprinting (2018)–Volume 4, Issue 1

