Page 57 - IJB-4-1
P. 57

3D Printing of hydrogel composite systems: Recent advances in technology for tissue engineering

               of complex objects, prototypes and biomedical scaffolds   https://dx.doi.org/10.1080/17452750802551298
               by means of computer-assisted design combined with   54.  Lim T, Bang C, Chian K, et al., 2008, Development of cryogenic
               computer-guided 3D plotting of polymers and reactive   prototyping for tissue engineering. Virtual Phys Prototyp, 3(1):
               oligomers. Macromol Mater Eng, 282(9): 17–21. http://  25–31. https://dx.doi.org/10.1080/17452750701799303
               dx.doi.org/10.1002/1439-2054(20001001)282:1<17::Aid-  55.  Bang Pham C, Fai Leong K, Chiun Lim T, et al., 2008,
               Mame17>3.0.Co;2-8                                  Rapid freeze prototyping technique in bio-plotters for tissue
           44.  Smay J E, Gratson G M, Shepherd R F, et al., 2002, Directed   scaffold fabrication. Rapid Prototyp J, 14(4): 246–253.
               colloidal assembly of 3D periodic structures. Adv Mater,   https://dx.doi.org/10.1108/13552540810896193
               14(18): 1279–1283.                              56.  Lu L, Zhang Q, Wootton D, et al., 2010, A novel sucrose
           45.  Ahn B Y, Duoss E B, Motala M J, et al., 2009, Omnidir-  porogen-based solid freeform fabrication system for bone
               ectional printing of flexible, stretchable, and spanning silver   scaffold manufacturing. Rapid Prototyp J, 16(5): 365–376.
               microelectrodes. Science, 323(5921): 1590–1593. https://  https://dx.doi.org/10.1108/13552541011065768
               dx.doi.org/10.1126/science.1168375              57.  Cima M, Sachs E, Fan T, et al., Three-dimensional printing
           46.  Vozzi G, Previti A, De Rossi D, et al., 2002, Microsyringe-  techniques. US patent 5387380, 1995 July 2.
               based deposition of two-dimensional and three-dimensional   58.  Mei J, Lovell M Rand Mickle M H, 2005, Formulation and
               polymer scaffolds with a well-defined geometry for   processing of novel conductive solution inks in continuous
               application to tissue engineering. Tissue Eng, 8(6): 1089–  inkjet printing of 3-D electric circuits. IEEE Trans Compon
               1098. https://dx.doi.org/10.1089/107632702320934182  Packaging Manuf Technol, 28(3): 265–273. https://dx.doi.
           47.  Tartarisco G, Gallone G, Carpi F, et al., 2009, Polyurethane   org/10.1109/TEPM.2005.852542
               unimorph bender microfabricated with pressure assisted   59.  Saunders R E, Gough J E and Derby B, 2008, Delivery of
               microsyringe (PAM) for biomedical applications. Mater Sci   human fibroblast cells by piezoelectric drop-on-demand
               Eng C Mater Biol Appl, 29(6): 1835–1841. https://dx.doi.  inkjet printing. Biomaterials, 29(2): 193–203. https://dx.doi.
               org/10.1016/j.msec.2009.02.017                     org/10.1016/j.biomaterials.2007.09.032
           48.  Xiong Z, Yan Y, Wang S, et al., 2002, Fabrication of porous   60.  Nakamura M, Kobayashi A, Takagi F, et al., 2005, Biocompatible
               scaffolds for bone tissue engineering via low-temperature   inkjet printing technique for designed seeding of individual
               deposition. Scr Mater, 46(11): 771–776. https://dx.doi.  living cells. Tissue Eng, 11(11–12): 1658–1666. https://dx.doi.
               org/10.1016/S1359-6462(02)00071-4                  org/10.1089/ten.2005.11.1658
           49.  Liu L, Xiong Z, Zhang R, et al., 2009, A novel osteochondral   61.   Cui X, Dean D, Ruggeri Z M, et al., 2010, Cell damage
               scaffold fabricated via multi-nozzle low-temperature   evaluation of thermal inkjet printed Chinese hamster ovary
               deposition manufacturing. J Bioact Compat Polym, 24(1):   cells. Biotechnol Bioeng, 106(6): 963–969. https://dx.doi.
               18–30. https://dx.doi.org/10.1177/0883911509102347  org/10.1002/bit.22762
           50.  Vadnere M, Amidon G, Lindenbaum S,  et al., 1984,   62.  Leukers B, Gülkan H, Irsen S H, et al., 2005, Hydroxyapatite
               Thermodynamic studies on the gel-sol transition of some   scaffolds for bone tissue engineering made by 3D printing. J
               pluronic polyols.  Int J Pharm, 22(2–3): 207–218. https://  MATER SCI-MATER M, 16(12): 1121–1124. https://dx.doi.
               dx.doi.org/10.1016/0378-5173(84)90022-X            org/10.1007/s10856-005-4716-5
           51.  Kim J Y and Cho D-W, 2009, Blended PCL/PLGA scaffold   63.  Inzana J A, Olvera D, Fuller S M, et al., 2014, 3D printing
               fabrication using multi-head deposition system. Microelectron   of composite calcium phosphate and collagen scaffolds for
               Eng,  86(4):  1447–1450.  https://dx.doi.org/10.1016/  bone regeneration. Biomaterials, 35(13): 4026–4034. https://
               j.mee.2008.11.026                                  dx.doi.org/10.1016/j.biomaterials.2014.01.064
           52.  Domingos M, Dinucci D, Cometa S, et al., 2009, Polycaprolactone   64.  Levy A, Miriyev A, Elliott A, et al., 2017, Additive manufacturing
               scaffolds fabricated via bioextrusion for tissue engineering   of complex-shaped graded TiC/steel composites. Mater Design,
               applications. Int J Biomater, 2009(1687–8787) : 239643. https://  118: 198–203. https://dx.doi.org/10.1016/j.matdes.2017.01.024
               dx.doi.org/10.1155/2009/239643                  65.  Pfister A, Landers R, Laib A, et al., 2004, Biofunctional
           53.  Lam C, Olkowski R, Swieszkowski W, et al., 2008, Mechanical   rapid prototyping for tissue-engineering applications: 3D
               and in vitro evaluations of composite PLDLLA/TCP scaffolds   bioplotting versus 3D printing. J Polym Sci Pol Chem, 42(3):
               for bone engineering. Virtual Phys Prototyp, 3(4): 193–197.   624–638. https:// dx.doi.org/10.1002/pola.10807

           24                          International Journal of Bioprinting (2018)–Volume 4, Issue 1
   52   53   54   55   56   57   58   59   60   61   62