Page 13 - IJB-4-2
P. 13

Lee J M, et al.

           Table 1. Summary of different bioprinting and bioassembly technologies

           Bioprinting Techniques Materials            Resolution          Advantages                  Reference
                                                                           Good resolution, Ultrafine droplets
           Material         Hydrogel: e.g. Alginate, collagen,   <10 µm to 200 µm diameter,    availability,  [18–21]
           Jetting          fibrin, agarose, gelatin methacryloyl, Droplet volume of 1 pL to   Precise deposition of materials
                            polyethylene glycol        7000 pL             High speed printing of droplet

                            Hydrogel: e.g. Alginate, collagen,             Relatively good resolution,
           Material Extrusion  fibrin, agarose, gelatin methacryloyl, 15–400 µm  Easy to implement,    [29–38]
                            polyethylene glycol                            Wide range of hydrogel materials,
                                                                           Potential for multi-material bioprinting
                                                                           Good resolution, Fast printing speed,
           Vat Polymerization   Light sensitive photopolymers  5–100 µm    Nozzle-free,                [60,61,67]
           Printing         (e.g. GelMA, PEGDA)                            Potentially free from support-structure
           Bioassembly or Bio-                         Depends on the size of   Direct cell manipulation, Scaffold-free   [69–71]
           placer           Microtissues (cell spheroids, cell sheet)  microtissues  Multi-cellular construct for complex
                                                                           tissue


           2.   Moroni  L,  Boland  T,  Burdick  J A,  et al.,  2017,   285. http://dx.doi.org/10.1016/j.precisioneng.2017.05.015
               Biofabrication: A guide to technology and terminology.   11.  Derby B, 2018, Bioprinting: Inkjet printing proteins and
               Trends Biotechnol,  36(4):  384–402.  http://dx.doi.  hybrid cell-containing materials and structures. J Mater
               org/10.1016/j.tibtech.2017.10.0153.                Chem, 18(47): 5717. http://dx.doi.org/10.1039/B807560C
           3.   Murphy S V, Atala A, 2014, 3D bioprinting of tissues and   12.  Fang Y, Frampton J P, S Raghavan S, et al., 2012, Rapid
               organs. Nat Biotechnol, 2014. 32(8): 773–785. http://dx.doi.  generation of multiplexed cell cocultures using acoustic
               org/10.1038/nbt.2958                               droplet ejection followed by aqueous two-phase exclusion
           4.   Mandrycky C, Wang C, Kim K, et al., 2016, 3D bioprinting   patterning. Tissue Eng Part C Methods,  18(9): 647–657.
               for engineering complex tissues. Biotechnol Adv, 34(4):   http://dx.doi.org/10.1089/ten.tec.2011.0709
               422–434. http://dx.doi.org/10.1016/j.biotechadv.2015.12.011  13.  Eagles  P A  ,  Qureshi A  N,    Jayasinghe  S  N,  2006,
           5.   Zhang Y S, Yue K, Aleman J, et al., 2017, 3D bioprinting for   Electrohydrodynamic jetting of mouse neuronal cells.
               tissue and organ fabrication. Ann Biomed Eng, 45(1): 148–  Biochem J, 394(Pt 2): 375–378. http://dx.doi.org/10.1042/
               163. http://dx.doi.org/10.1007/s10439-016-1612-8   BJ20051838
           6.   Suntornnond R, An J, Chua C K, 2017, Bioprinting of   14.  Jayasinghe  S  N,    Qureshi A,  Eagles  P A,  2006,
               thermoresponsive hydrogels for next generation tissue   Electrohydrodynamic jet processing: An advanced electric-
               engineering: A review. Macromol Mater Eng, 302: 1600266.   field-driven jetting phenomenon for processing living
               http://dx.doi.org/10.1002/mame.201600266           cells. Small, 2(2): 216–219. http://dx.doi.org/10.1002/
           7.   Gudapati H, Dey M,  Ozbolat I, 2016, A comprehensive   smll.200500291
               review on droplet-based bioprinting: Past, present and   15.  Abeyewickreme A,  Kwok A, Mcewan J R, et al., 2009, Bio-
               future. Biomaterials, 102: 20–42. http://dx.doi.org/10.1016/  electrospraying embryonic stem cells: Interrogating cellular
               j.biomaterials.2016.06.012                         viability and pluripotency. Integr Biol (Camb), 2009. 1(3):
           8.   Vijayavenkataraman  S,  Lu W  F,  Fuh  J Y,  2016,  3D   260–266. http://dx.doi.org/10.1039/b819889f
               bioprinting of skin: A state-of-the-art review on modelling,   16.  Guillemot  F, Guillotin B,  Fontaine A, et al., 2011, Laser-
               materials, and processes. Biofabrication, 8(3): 032001.   assisted bioprinting to deal with tissue complexity in
               http://dx.doi.org/10.1088/1758-5090/8/3/032001     regenerative medicine. Mrs Bulletin, 36(12): 1015–1019.
           9.   Boland T,  Ovslanikov A, Chickov B N, et al., 2007, Rapid   http://dx.doi.org/10.1557/mrs.2011.272
               prototyping of artificial tissues and medical devices. Adv   17.  Gaebel, R, Ma N, Liu J, et al., 2011, Patterning human stem
               Mater Process, 165(4): 51–53.                      cells and endothelial cells with laser printing for cardiac
           10.  Yap Y L, Wang C C, Sing S L, et al., 2017, Material jetting   regeneration. Biomaterials, 32(35): 9218–9230. http://dx.doi.
               additive manufacturing: An experimental study using   org/10.1016/j.biomaterials.2011.08.071
               designed metrological benchmarks. Precis Eng, 50: 275–  18.  Xu C, 2014, Freeform vertical and horizontal fabrication


                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2         7
   8   9   10   11   12   13   14   15   16   17   18