Page 16 - IJB-4-2
P. 16
3D bioprinting processes: A perspective on classification and terminology
prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi. Biomaterials, 30(30): 5910–5917. http://dx.doi.org/10.1016/
org/10.1089/ten.2006.12.83 j.biomaterials.2009.06.034
60. Soman P, Chung P H, Zhang A P, et al., 2013, Digital 71. Ludwig G, Kartmann S, Troendle K, et al., 2017, Large
microfabrication of user-defined 3D microstructures in cell- scale production and controlled deposition of single HUVEC
laden hydrogels. Biotechnol Bioeng, 110(11): 3038–3047. spheroids for bioprinting applications. Biofabrication, 9(2):
http://dx.doi.org/10.1002/bit.24957 025027. http://dx.doi.org/10.1088/1758-5090/aa7218
61. Zhu W, Qu X, Zhu J, et al., 2017, Direct 3D bioprinting 72. Blakely A M, Manning K L, Tripathi A, et al., 2015, Bio-
of prevascularized tissue constructs with complex pick, place, and perfuse: A new instrument for three-
microarchitecture. Biomaterials, 124: 106–115. http://dx.doi. dimensional tissue engineering. Tissue Eng Part C
org/10.1016/j.biomaterials.2017.01.042 Methods,21(7): 737–746. http://dx.doi.org/10.1089/ten.
62. Gauvin R, Chen Y C, Jin W L, et al., 2012, Microfabrication TEC.2014.0439
of complex porous tissue engineering scaffolds using 3D 73. Itoh M, K Nakayama K, Noguchi R, et al., 2015, Scaffold-
projection stereolithography. Biomaterials, 33(15): 3824– free tubular tissues created by a bio-3D printer undergo
3834. http://dx.doi.org/10.1016/j.biomaterials.2012.01.048 remodeling and endothelialization when implanted in
63. Zongjie W, Abdulla R, Parker B, et al., 2015, A simple rat aortae. PLOS ONE, 10(9): e0136681. http://dx.doi.
and high-resolution stereolithography-based 3D org/10.1371/journal.pone.0145971
bioprinting system using visible light crosslinkable 74. Ong C S, Fukunishi T, Zhang H, et al., 2017, Biomaterial-
bioinks. Biofabrication, 7(4): 045009. http://dx.doi. free three-dimensional bioprinting of cardiac tissue using
org/10.1088/1758-5090/7/4/045009 human induced pluripotent stem cell derived cardiomyocytes.
64. Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel Sci Rep, 7(1): 4566. http://dx.doi.org/10.1038/s41598-017-
bioprinting method and system for forming hybrid tissue 05018-4
engineering constructs. Biofabrication, 7(4): 045008. http:// 75. Blanche C I, Cui F, Tripathi A, et al., 2016, The bio-gripper:
dx.doi.org/10.1088/1758-5090/7/4/045008 A fluid-driven micro-manipulator of living tissue constructs
65. Yu S L, Lee S K, 2017, Ultraviolet radiation: DNA damage, for additive bio-manufacturing. Biofabrication, 8(2):
repair, and human disorders. Mol Cell Toxicol, 13(1): 21–28. 025015. http://dx.doi.org/10.1088/1758-5090/8/2/025015
http://dx.doi.org/10.1007/s13273-017-0002-0 76. Fattah A R A, Meleca E, Mishriki S, et al., 2016, In situ
66. de Gruijil F R, v. Kranen H J, Mullenders L H F, 2001, UV- 3D label-free contactless bioprinting of cells through
induced DNA damage, repair, mutations and oncogenic diamagnetophoresis. ACS Biomater Sci Eng, 2(12): 2133–
pathways in skin cancer. J Photochem Photobiol B, 63(1–3): 2138. http://dx.doi.org/10.1021/acsbiomaterials.6b00614
19–27. 77. Souza G, Tseng H, Gage J A, et al., 2017, Magnetically
67. Ma X, Qu X, Zhu W, et al., 2016, Deterministically bioprinted human myometrial 3D cell rings as a model for
patterned biomimetic human iPSC-derived hepatic model uterine contractility. Int J Mol Sci, 18(4): 683. http://dx.doi.
via rapid 3D bioprinting. Proc Natl Acad Sci U S A, 113(8): org/10.3390/ijms18040683
2206–2211. http://dx.doi.org/10.1073/pnas.1524510113 78. Tseng H, Gage J A, Haisler W L, et al., 2016, A high-
68. Odde D J, Renn M J, 1999, Laser-guided direct writing for throughput in vitro ring assay for vasoactivity using magnetic
applications in biotechnology. Trends Biotechnol, 17(10): 3D bioprinting. Sci Rep, 6: 30640. 10.1038/srep30640
385–389. 79. Whatley B R, Li X, Zhang N, et al., 2014, Magnetic-directed
69. Mironov V, Khesuani Y D, Bulanova E A, et al., 2016, patterning of cell spheroids. J Biomed Mater Res A, 102(5):
Patterning of tissue spheroids biofabricated from human 1537–1547. http://dx.doi.org/10.1002/jbm.a.34797
fibroblasts on the surface of electrospun polyurethane matrix 80. Goh G D, Dikshit V, Nagalingam A P, et al., 2018,
using 3D bioprinter. Observationum Medicarum, 2(1): 8. Characterization of mechanical properties and fracture mode
http://dx.doi.org/10.18063/IJB.2016.01.007 of additively manufactured carbon fiber and glass fiber
70. Norotte C, Marga F S, Niklason L E, et al., 2009, Scaffold- reinforced thermoplastics. Mater Design, 137: 79–89. http://
free vascular tissue engineering using bioprinting. dx.doi.org/10.1016/j.matdes.2017.10.021
10 International Journal of Bioprinting (2018)–Volume 4, Issue 2

