Page 16 - IJB-4-2
P. 16

3D bioprinting processes: A perspective on classification and terminology

               prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi.  Biomaterials, 30(30): 5910–5917. http://dx.doi.org/10.1016/
               org/10.1089/ten.2006.12.83                         j.biomaterials.2009.06.034
           60.  Soman P, Chung P H, Zhang A P, et al., 2013, Digital   71.  Ludwig G, Kartmann S, Troendle K, et al., 2017, Large
               microfabrication of user-defined 3D microstructures in cell-  scale production and controlled deposition of single HUVEC
               laden hydrogels. Biotechnol Bioeng, 110(11): 3038–3047.   spheroids for bioprinting applications. Biofabrication,  9(2):
               http://dx.doi.org/10.1002/bit.24957                025027. http://dx.doi.org/10.1088/1758-5090/aa7218
           61.  Zhu W, Qu X, Zhu J, et al., 2017, Direct 3D bioprinting   72.  Blakely A M,  Manning K L, Tripathi A, et al., 2015, Bio-
               of  prevascularized  tissue  constructs  with  complex   pick, place, and perfuse: A new instrument for three-
               microarchitecture. Biomaterials, 124: 106–115. http://dx.doi.  dimensional  tissue  engineering.  Tissue Eng Part C
               org/10.1016/j.biomaterials.2017.01.042             Methods,21(7): 737–746. http://dx.doi.org/10.1089/ten.
           62.  Gauvin R,  Chen Y C, Jin W L, et al., 2012, Microfabrication   TEC.2014.0439
               of complex porous tissue engineering scaffolds using 3D   73.  Itoh M, K Nakayama K, Noguchi R, et al., 2015, Scaffold-
               projection stereolithography. Biomaterials, 33(15): 3824–  free tubular tissues created by a bio-3D printer undergo
               3834. http://dx.doi.org/10.1016/j.biomaterials.2012.01.048  remodeling and endothelialization when implanted in
           63.  Zongjie W, Abdulla R, Parker B, et al., 2015, A simple   rat aortae. PLOS ONE, 10(9): e0136681. http://dx.doi.
               and  high-resolution  stereolithography-based  3D   org/10.1371/journal.pone.0145971
               bioprinting  system  using  visible  light  crosslinkable   74.  Ong C S, Fukunishi T, Zhang H, et al., 2017, Biomaterial-
               bioinks. Biofabrication, 7(4): 045009. http://dx.doi.  free three-dimensional bioprinting of cardiac tissue using
               org/10.1088/1758-5090/7/4/045009                   human induced pluripotent stem cell derived cardiomyocytes.
           64.  Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel   Sci Rep, 7(1): 4566. http://dx.doi.org/10.1038/s41598-017-
               bioprinting method and system for forming hybrid tissue   05018-4
               engineering constructs. Biofabrication, 7(4): 045008. http://  75.  Blanche C I, Cui F, Tripathi A, et al., 2016, The bio-gripper:
               dx.doi.org/10.1088/1758-5090/7/4/045008            A fluid-driven micro-manipulator of living tissue constructs
           65.  Yu S L, Lee S K, 2017, Ultraviolet radiation: DNA damage,   for additive bio-manufacturing. Biofabrication, 8(2):
               repair, and human disorders. Mol Cell Toxicol, 13(1): 21–28.   025015. http://dx.doi.org/10.1088/1758-5090/8/2/025015
               http://dx.doi.org/10.1007/s13273-017-0002-0     76.  Fattah A R A, Meleca E, Mishriki S, et al., 2016, In situ
           66.  de Gruijil F R, v. Kranen H J,  Mullenders L H F, 2001, UV-  3D label-free contactless bioprinting of cells through
               induced DNA damage, repair, mutations and oncogenic   diamagnetophoresis. ACS Biomater Sci Eng, 2(12): 2133–
               pathways in skin cancer. J Photochem Photobiol B, 63(1–3):   2138. http://dx.doi.org/10.1021/acsbiomaterials.6b00614
               19–27.                                          77.  Souza G,  Tseng H, Gage J A, et al., 2017, Magnetically
           67.  Ma X,  Qu X, Zhu W, et al., 2016, Deterministically   bioprinted human myometrial 3D cell rings as a model for
               patterned biomimetic human iPSC-derived hepatic model   uterine contractility. Int J Mol Sci, 18(4): 683. http://dx.doi.
               via rapid 3D bioprinting. Proc Natl Acad Sci U S A, 113(8):   org/10.3390/ijms18040683
               2206–2211. http://dx.doi.org/10.1073/pnas.1524510113  78.  Tseng H, Gage J A, Haisler W L, et al., 2016, A high-
           68.  Odde D J, Renn M J, 1999, Laser-guided direct writing for   throughput in vitro ring assay for vasoactivity using magnetic
               applications in biotechnology. Trends Biotechnol, 17(10):   3D bioprinting. Sci Rep, 6: 30640. 10.1038/srep30640
               385–389.                                        79.  Whatley B R, Li X, Zhang N, et al., 2014, Magnetic-directed
           69.  Mironov V, Khesuani Y D, Bulanova E A, et al., 2016,   patterning of cell spheroids. J Biomed Mater Res A, 102(5):
               Patterning of tissue spheroids biofabricated from human   1537–1547. http://dx.doi.org/10.1002/jbm.a.34797
               fibroblasts on the surface of electrospun polyurethane matrix   80.  Goh  G  D,  Dikshit V,  Nagalingam A  P,  et  al.,  2018,
               using 3D bioprinter. Observationum Medicarum, 2(1): 8.   Characterization of mechanical properties and fracture mode
               http://dx.doi.org/10.18063/IJB.2016.01.007         of additively manufactured carbon fiber and glass fiber
           70.  Norotte C, Marga F S, Niklason L E, et al., 2009, Scaffold-  reinforced thermoplastics. Mater Design, 137: 79–89. http://
               free  vascular  tissue  engineering  using  bioprinting.   dx.doi.org/10.1016/j.matdes.2017.10.021





           10                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   11   12   13   14   15   16   17   18   19   20   21