Page 14 - IJB-4-2
P. 14

3D bioprinting processes: A perspective on classification and terminology

               of  alginate-based  vascular-like  tubular  constructs   30.  Billiet T, Gevaert E, Schryver T D, et al., 2014, The
               using  inkjetting.  Journal  of  Manufacturing  Science   3D  printing  of  gelatin  methacrylamide  cell-laden
               and  Engineering,  136(6):  061020.  http://dx.doi.  tissue-engineered constructs with high cell viability.
               org/10.1115/1.4028578                              Biomaterials, 35(1): 49–62. http://dx.doi.org/10.1016/
           19.  Xu C, Zhang M, Huang Y, et al., 2014, Study of droplet   j.biomaterials.2013.09.078.
               formation process during drop-on-demand inkjetting of   31.  Duan B, Hockaday L A, Kang K H, et al., 2013, 3D
               living cell-laden bioink. Langmuir, 30(30): 9130–9138.   bioprinting of heterogeneous aortic valve conduits with
               http://dx.doi.org/10.1021/la501430x                alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5):
           20.  De Coppi P, Bartsch G, Siddiquiet M M, et al., 2007,   1255–1264. http://dx.doi.org/10.1002/jbm.a.34420.
               Isolation  of  amniotic  stem  cell  lines  with  potential   32.  Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011,
               for therapy. Nat Biotechnol, 25(1): 100. http://dx.doi.  Distinct tissue formation by heterogeneous printing of
               org/10.1038/nbt1274                                osteo- and endothelial progenitor cells. Tissue Eng Part
           21.  Michael S, Sorg H, Pecket C T, et al., 2013, Tissue   A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.
               engineered skin substitutes created by laser-assisted   TEA.2011.0019
               bioprinting form skin-like structures in the dorsal skin fold   33.  Huang Y, He K, Wang X, 2013, Rapid prototyping of a
               chamber in mice. PloS One, 8(3): e57741. 10.1371/journal.  hybrid hierarchical polyurethane-cell/hydrogel construct
               pone.0057741                                       for regenerative medicine. Mater Sci Eng C Mater Biol
           22.  Demirci U, Montesano G, 2007, Single cell epitaxy by   Appl,  33(6):  3220–3229.  http://dx.doi.org/10.1016/
               acoustic picolitre droplets. Lab Chip, 7(9): 1139–1145.   j.msec.2013.03.048
               http://dx.doi.org/10.1039/b704965j              34.  Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden
           23.  Cui H, Nowicki M, Fisher J P, et al., 2017, 3D bioprinting   poly(varepsilon caprolactone)/alginate hybrid scaffolds
               for organ regeneration. Adv Healthc Mater, 6(1): 1601118.   fabricated by an aerosol cross-linking process for obtaining
               http://dx.doi.org/10.1002/adhm.201601118           homogeneous cell distribution: Fabrication, seeding
           24.  Guillotin B, Souquet A S, Duocastella M, et al., 2010,   efficiency, and cell proliferation and distribution. Tissue Eng
               Laser assisted bioprinting of engineered tissue with high   Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/
               cell density and microscale organization. Biomaterials,   ten.TEC.2012.0651
               2010. 31(28): 7250–7256. http://dx.doi.org/10.1016/  35.  Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm
               j.biomaterials.2010.05.055                         Bioprinter’ for hybrid biofabrication of tissue engineering
           25.  Murphy S V,  Atala A, 2014, 3D bioprinting of tissues   constructs. Robot Comput Integr Manuf, 30(3): 295–304.
               and organs. Nat Biotechnol, 32(8): 773. http://dx.doi.  http://dx.doi.org/10.1016/j.rcim.2013.10.005
               org/10.1038/nbt.2958                            36.  Shim, J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of
           26.  Tan E Y S, Yeong W Y, 2015, Concentric bioprinting   a mechanically enhanced three-dimensional dual cell-
               of alginate-based tubular constructs using multi-nozzle   laden construct for osteochondral tissue engineering using
               extrusion-based  technique. International Journal of   a multi-head tissue/organ building system. J Micromech
               Bioprinting,1(1): 49–56.                           Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-
           27.  Agarwala S, Lee J M, Ng W L, et al., 2018, A novel 3D   1317/22/8/085014
               bioprinted flexible and biocompatible hydrogel bioelectronic   37.  Snyder J E, Hamid Q, Wang C, et al., 2011, Bioprinting cell-
               platform. Biosens Bioelectron, 102: 365–371. http://dx.doi.  laden matrigel for radioprotection study of liver by pro-drug
               org/10.1016/j.bios.2017.11.039                     conversion in a dual-tissue microfluidic chip. Biofabrication,
           28.  Lee J M, Sing S L, Tan E Y S, et al., 2016, Bioprinting in   3(3):  034112.  http://dx.doi.org/10.1088/1758-
               cardiovascular tissue engineering: A review. International   5082/3/3/034112
               Journal of Bioprinting, 2(2): 27–36.            38.  Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of
           29.  Ahn S, Lee H,  Kim G, 2013, Functional cell-laden   three-dimensional hepatocyte/gelatin structures with rapid
               alginate scaffolds consisting of core/shell struts for tissue   prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi.
               regeneration. Carbohydr Polym, 98(1): 936–942. http://  org/10.1089/ten.2006.12.83
               dx.doi.org/10.1016/j.carbpol.2013.07.008        39.  Skardal A, Zhang J, Prestwich G D, 2010, Bioprinting

           8                           International Journal of Bioprinting (2018)–Volume 4, Issue 2
   9   10   11   12   13   14   15   16   17   18   19