Page 14 - IJB-4-2
P. 14
3D bioprinting processes: A perspective on classification and terminology
of alginate-based vascular-like tubular constructs 30. Billiet T, Gevaert E, Schryver T D, et al., 2014, The
using inkjetting. Journal of Manufacturing Science 3D printing of gelatin methacrylamide cell-laden
and Engineering, 136(6): 061020. http://dx.doi. tissue-engineered constructs with high cell viability.
org/10.1115/1.4028578 Biomaterials, 35(1): 49–62. http://dx.doi.org/10.1016/
19. Xu C, Zhang M, Huang Y, et al., 2014, Study of droplet j.biomaterials.2013.09.078.
formation process during drop-on-demand inkjetting of 31. Duan B, Hockaday L A, Kang K H, et al., 2013, 3D
living cell-laden bioink. Langmuir, 30(30): 9130–9138. bioprinting of heterogeneous aortic valve conduits with
http://dx.doi.org/10.1021/la501430x alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5):
20. De Coppi P, Bartsch G, Siddiquiet M M, et al., 2007, 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420.
Isolation of amniotic stem cell lines with potential 32. Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011,
for therapy. Nat Biotechnol, 25(1): 100. http://dx.doi. Distinct tissue formation by heterogeneous printing of
org/10.1038/nbt1274 osteo- and endothelial progenitor cells. Tissue Eng Part
21. Michael S, Sorg H, Pecket C T, et al., 2013, Tissue A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.
engineered skin substitutes created by laser-assisted TEA.2011.0019
bioprinting form skin-like structures in the dorsal skin fold 33. Huang Y, He K, Wang X, 2013, Rapid prototyping of a
chamber in mice. PloS One, 8(3): e57741. 10.1371/journal. hybrid hierarchical polyurethane-cell/hydrogel construct
pone.0057741 for regenerative medicine. Mater Sci Eng C Mater Biol
22. Demirci U, Montesano G, 2007, Single cell epitaxy by Appl, 33(6): 3220–3229. http://dx.doi.org/10.1016/
acoustic picolitre droplets. Lab Chip, 7(9): 1139–1145. j.msec.2013.03.048
http://dx.doi.org/10.1039/b704965j 34. Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden
23. Cui H, Nowicki M, Fisher J P, et al., 2017, 3D bioprinting poly(varepsilon caprolactone)/alginate hybrid scaffolds
for organ regeneration. Adv Healthc Mater, 6(1): 1601118. fabricated by an aerosol cross-linking process for obtaining
http://dx.doi.org/10.1002/adhm.201601118 homogeneous cell distribution: Fabrication, seeding
24. Guillotin B, Souquet A S, Duocastella M, et al., 2010, efficiency, and cell proliferation and distribution. Tissue Eng
Laser assisted bioprinting of engineered tissue with high Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/
cell density and microscale organization. Biomaterials, ten.TEC.2012.0651
2010. 31(28): 7250–7256. http://dx.doi.org/10.1016/ 35. Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm
j.biomaterials.2010.05.055 Bioprinter’ for hybrid biofabrication of tissue engineering
25. Murphy S V, Atala A, 2014, 3D bioprinting of tissues constructs. Robot Comput Integr Manuf, 30(3): 295–304.
and organs. Nat Biotechnol, 32(8): 773. http://dx.doi. http://dx.doi.org/10.1016/j.rcim.2013.10.005
org/10.1038/nbt.2958 36. Shim, J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of
26. Tan E Y S, Yeong W Y, 2015, Concentric bioprinting a mechanically enhanced three-dimensional dual cell-
of alginate-based tubular constructs using multi-nozzle laden construct for osteochondral tissue engineering using
extrusion-based technique. International Journal of a multi-head tissue/organ building system. J Micromech
Bioprinting,1(1): 49–56. Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-
27. Agarwala S, Lee J M, Ng W L, et al., 2018, A novel 3D 1317/22/8/085014
bioprinted flexible and biocompatible hydrogel bioelectronic 37. Snyder J E, Hamid Q, Wang C, et al., 2011, Bioprinting cell-
platform. Biosens Bioelectron, 102: 365–371. http://dx.doi. laden matrigel for radioprotection study of liver by pro-drug
org/10.1016/j.bios.2017.11.039 conversion in a dual-tissue microfluidic chip. Biofabrication,
28. Lee J M, Sing S L, Tan E Y S, et al., 2016, Bioprinting in 3(3): 034112. http://dx.doi.org/10.1088/1758-
cardiovascular tissue engineering: A review. International 5082/3/3/034112
Journal of Bioprinting, 2(2): 27–36. 38. Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of
29. Ahn S, Lee H, Kim G, 2013, Functional cell-laden three-dimensional hepatocyte/gelatin structures with rapid
alginate scaffolds consisting of core/shell struts for tissue prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi.
regeneration. Carbohydr Polym, 98(1): 936–942. http:// org/10.1089/ten.2006.12.83
dx.doi.org/10.1016/j.carbpol.2013.07.008 39. Skardal A, Zhang J, Prestwich G D, 2010, Bioprinting
8 International Journal of Bioprinting (2018)–Volume 4, Issue 2

