Page 15 - IJB-4-2
P. 15
Lee J M, et al.
vessel-like constructs using hyaluronan hydrogels j.biomaterials.2012.09.035
crosslinked with tetrahedral polyethylene glycol 49. Shim J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of
tetracrylates. Biomaterials, 31(24): 6173–6181. http://dx.doi. a mechanically enhanced three-dimensional dual cell-
org/10.1016/j.biomaterials.2010.04.045 laden construct for osteochondral tissue engineering using
40. Visser J, Peters B, Burger T J, et al., 2013, Biofabrication a multi-head tissue/organ building system. J Micromech
of multi-material anatomically shaped tissue Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-
constructs. Biofabrication, 5(3): 035007. http://dx.doi. 1317/22/8/085014
org/10.1088/1758-5082/5/3/035007 50. Pati F, J Jang J, Ha D H, et al., 2014, Printing three-
41. Lee W, Lee V K, Polio S, et al., 2009, Three-dimensional dimensional tissue analogues with decellularized
cell-hydrogel printer using electromechanical microvalve extracellular matrix bioink. Nat Commun, 5: 3935. http://
for tissue engineering. in Solid-state sensors, actuators and dx.doi.org/10.1038/ncomms4935
microsystems conference. TRANSDUCERS 2009. http:// 51. Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting
dx.doi.org/10.1109/SENSOR.2009.5285591 system to produce human-scale tissue constructs with
42. Shi P, Tan E Y S, Yeong W Y, et al., 2018, A bilayer structural integrity. Nat Biotechnol, 34(3): 312–319. http://
photoreceptor-retinal tissue model with gradient cell dx.doi.org/10.1038/nbt.3413
density design: A study of microvalve-based bioprinting. 52. Webb B, Doyle B J, 2017, Parameter optimization for 3D
J Tissue Eng Regen Med, 12(5): 1297–1306. http://dx.doi. bioprinting of hydrogels. Bioprinting, 8: 8–12. http://dx.doi.
org/10.1002/term.2661 org/10.1016/j.bprint.2017.09.001
43. Ng W L, Tan J Q J, Yeong W Y, et al., 2018, Proof- 53. Lee J M, Yeong W Y, 2015, A preliminary model of time-
of-concept: 3D bioprinting of pigmented human skin pressure dispensing system for bioprinting based on printing
constructs. Biofabrication, 10(2): 025005. http://dx.doi. and material parameters. Virtual Phys Prototyp, 10(1): 3–8.
org/10.1088/1758-5090/aa9e1e http://dx.doi.org/10.1080/17452759.2014.979557
44. Liliang O, Yao R, Zhao Y, et al., 2016, Effect of bioink 54. Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm
properties on printability and cell viability for 3D bioplotting Bioprinter’ for hybridbiofabrication of tissue engineering
of embryonic stem cells. Biofabrication, 8(3): 035020. http:// constructs. Robot Comput Integr Manuf, 30(3): 295–304.
dx.doi.org/10.1088/1758-5090/8/3/035020 http://dx.doi.org/10.1016/j.rcim.2013.10.005
45. Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden 55. Ahn S, Lee H, Kim G, 2013, Functional cell-laden
poly(varepsilon-caprolactone)/alginate hybrid scaffolds alginate scaffolds consisting of core/shell struts for tissue
fabricated by an aerosol cross-linking process for obtaining regeneration. Carbohydr Polym, 98(1): 936–942. http://
homogeneous cell distribution: Fabrication, seeding dx.doi.org/10.1016/j.carbpol.2013.07.008
efficiency, and cell proliferation and distribution. Tissue Eng 56. Huang Y, He K, Wang X, 2013, Rapid prototyping of a
Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/ hybrid hierarchical polyurethane-cell/hydrogel construct
ten.TEC.2012.0651 for regenerative medicine. Mater Sci Eng C Mater Biol
46. Schuurman W, Khristov V, Pot M W, et al., 2011, Appl, 33(6): 3220–3229. http://dx.doi.org/10.1016/
Bioprinting of hybrid tissue constructs with tailorable j.msec.2013.03.048
mechanical properties. Biofabrication, 3(2): 021001. http:// 57. Duan B, Hockaday L A, Kang K H, et al., 2013, 3D
dx.doi.org/10.1088/1758-5082/3/2/021001 bioprinting of heterogeneous aortic valve conduits with
47. Shim J H, Kim J Y, Park M, et al., 2011, Development of alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5):
a hybrid scaffold with synthetic biomaterials and hydrogel 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420
using solid freeform fabrication technology. Biofabrication, 58. Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011,
3(3): 034102. http://dx.doi.org/10.1088/1758- Distinct tissue formation by heterogeneous printing of
5082/3/3/034102 osteo- and endothelial progenitor cells. Tissue Eng Part
48. Xu T, W Zhao W, Zhu J M, et al., 2013, Complex A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.
heterogeneous tissue constructs containing multiple cell TEA.2011.0019
types prepared by inkjet printing technology. Biomaterials, 59. Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of
2013. 34(1): 130–139. http://dx.doi.org/10.1016/ three-dimensional hepatocyte/gelatin structures with rapid
International Journal of Bioprinting (2018)–Volume 4, Issue 2 9

