Page 15 - IJB-4-2
P. 15

Lee J M, et al.

               vessel-like  constructs  using  hyaluronan  hydrogels   j.biomaterials.2012.09.035
               crosslinked  with  tetrahedral  polyethylene  glycol   49.  Shim J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of
               tetracrylates. Biomaterials, 31(24): 6173–6181. http://dx.doi.  a mechanically enhanced three-dimensional dual cell-
               org/10.1016/j.biomaterials.2010.04.045             laden construct for osteochondral tissue engineering using
           40.  Visser J, Peters B, Burger T J, et al., 2013, Biofabrication   a multi-head tissue/organ building system. J Micromech
               of  multi-material  anatomically  shaped  tissue   Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-
               constructs. Biofabrication, 5(3): 035007. http://dx.doi.  1317/22/8/085014
               org/10.1088/1758-5082/5/3/035007                50.  Pati F, J Jang J, Ha D H, et al., 2014, Printing three-
           41.  Lee W, Lee V K, Polio S, et al., 2009, Three-dimensional   dimensional  tissue  analogues  with  decellularized
               cell-hydrogel printer using electromechanical microvalve   extracellular matrix bioink. Nat Commun, 5: 3935. http://
               for tissue engineering. in Solid-state sensors, actuators and   dx.doi.org/10.1038/ncomms4935
               microsystems conference. TRANSDUCERS 2009. http://  51.  Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting
               dx.doi.org/10.1109/SENSOR.2009.5285591             system to produce human-scale tissue constructs with
           42.  Shi P, Tan E Y S, Yeong W Y, et al., 2018, A bilayer   structural integrity. Nat Biotechnol, 34(3): 312–319. http://
               photoreceptor-retinal tissue model with gradient cell   dx.doi.org/10.1038/nbt.3413
               density design: A study of microvalve-based bioprinting.   52.  Webb B, Doyle B J, 2017, Parameter optimization for 3D
               J Tissue Eng Regen Med, 12(5): 1297–1306. http://dx.doi.  bioprinting of hydrogels. Bioprinting, 8: 8–12. http://dx.doi.
               org/10.1002/term.2661                              org/10.1016/j.bprint.2017.09.001
           43.  Ng W L, Tan J Q J, Yeong W Y, et al., 2018, Proof-  53.  Lee J M, Yeong W Y, 2015, A preliminary model of time-
               of-concept: 3D bioprinting of pigmented human skin   pressure dispensing system for bioprinting based on printing
               constructs. Biofabrication, 10(2): 025005. http://dx.doi.  and material parameters. Virtual Phys Prototyp, 10(1): 3–8.
               org/10.1088/1758-5090/aa9e1e                       http://dx.doi.org/10.1080/17452759.2014.979557
           44.  Liliang O, Yao R, Zhao Y, et al., 2016, Effect of bioink   54.  Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm
               properties on printability and cell viability for 3D bioplotting   Bioprinter’ for hybridbiofabrication of tissue engineering
               of embryonic stem cells. Biofabrication, 8(3): 035020. http://  constructs. Robot Comput Integr Manuf, 30(3): 295–304.
               dx.doi.org/10.1088/1758-5090/8/3/035020            http://dx.doi.org/10.1016/j.rcim.2013.10.005
           45.  Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden   55.  Ahn  S,  Lee  H,  Kim  G,  2013,  Functional  cell-laden
               poly(varepsilon-caprolactone)/alginate hybrid scaffolds   alginate scaffolds consisting of core/shell struts for tissue
               fabricated by an aerosol cross-linking process for obtaining   regeneration. Carbohydr Polym, 98(1): 936–942. http://
               homogeneous cell distribution: Fabrication, seeding   dx.doi.org/10.1016/j.carbpol.2013.07.008
               efficiency, and cell proliferation and distribution. Tissue Eng   56.  Huang Y, He K, Wang X, 2013, Rapid prototyping of a
               Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/  hybrid hierarchical polyurethane-cell/hydrogel construct
               ten.TEC.2012.0651                                  for regenerative medicine. Mater Sci Eng C Mater Biol
           46.  Schuurman W,  Khristov V,  Pot  M W,  et al.,  2011,   Appl,  33(6):  3220–3229.  http://dx.doi.org/10.1016/
               Bioprinting of hybrid tissue constructs with tailorable   j.msec.2013.03.048
               mechanical properties. Biofabrication, 3(2): 021001. http://  57.  Duan B, Hockaday L A, Kang K H, et al., 2013, 3D
               dx.doi.org/10.1088/1758-5082/3/2/021001            bioprinting of heterogeneous aortic valve conduits with
           47.  Shim J H, Kim J Y, Park M, et al., 2011, Development of   alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5):
               a hybrid scaffold with synthetic biomaterials and hydrogel   1255–1264. http://dx.doi.org/10.1002/jbm.a.34420
               using solid freeform fabrication technology. Biofabrication,   58.  Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011,
               3(3):  034102.  http://dx.doi.org/10.1088/1758-    Distinct tissue formation by heterogeneous printing of
               5082/3/3/034102                                    osteo- and endothelial progenitor cells. Tissue Eng Part
           48.  Xu T, W  Zhao W,  Zhu  J  M,  et al.,  2013,  Complex   A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.
               heterogeneous tissue constructs containing multiple cell   TEA.2011.0019
               types prepared by inkjet printing technology. Biomaterials,   59.  Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of
               2013.  34(1):  130–139.  http://dx.doi.org/10.1016/  three-dimensional hepatocyte/gelatin structures with rapid

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2         9
   10   11   12   13   14   15   16   17   18   19   20