Page 34 - IJB-10-4
        P. 34
     International Journal of Bioprinting                                       PAI for 3D bioprinted constructs
               doi: 10.1002/ange.201916147                     64.  Baik JW, Kim H, Son M, et al. Intraoperative label‐free
                                                                  photoacoustic histopathology of clinical specimens.  Laser
            53.  Park E-Y, Oh D, Park S, Kim W, Kim C. New contrast agents
               for photoacoustic imaging and theranostics: recent 5-year   Photonics Rev. 2021;15(10):2100124.
               overview  on  phthalocyanine/naphthalocyanine-based     doi: 10.1002/lpor.202170052
               nanoparticles. APL Bioeng. 2021;5(3):031510.    65.  Martell MT, Haven NJ, Cikaluk BD, et al. Deep learning-
               doi: 10.1063/5.0047660                             enabled  realistic  virtual  histology  with  ultraviolet
                                                                  photoacoustic remote sensing microscopy.  Nat Commun.
            54.  Ding Y, Park B, Ye J, et al. Surfactant‐stripped semiconducting
               polymer  micelles  for  tumor  theranostics  and  deep  tissue   2023;14(1):5967.
               imaging in the NIR‐II window. Small. 2022;18(6):e2104132.     doi: 10.1038/s41467-023-41574-2
               doi: 10.1002/smll.202104132                     66.  Cao R, Nelson SD, Davis S, et al. Label-free intraoperative
                                                                  histology of bone tissue via deep-learning-assisted ultraviolet
            55.  Park  J,  Park  B,  Yong  U,  et  al.  Bi-modal  near-infrared
               fluorescence and ultrasound imaging via a transparent   photoacoustic microscopy. Nat Biomed Eng. 2023;7(2):124-134.
               ultrasound transducer for sentinel lymph node localization.      doi: 10.1038/s41551-022-00940-z
               Opt Lett. 2022;47(2):393-396.                   67.  Kang L, Li X, Zhang Y, Wong TT. Deep learning enables
               doi: 10.1364/ol.446041                             ultraviolet photoacoustic microscopy based histological
                                                                  imaging with near real-time virtual staining. Photoacoustics.
            56.  Maji D, Oh D, Sharmah Gautam K, et al. Copper‐catalyzed
               covalent dimerization  of near‐infrared  fluorescent   2021;25:100308.
               cyanine dyes: synergistic enhancement of photoacoustic      doi: 10.1016/j.pacs.2021.100308
               signals for molecular imaging of tumors.  Anal Sens.   68.  Cao R, Zhao J, Li L, et al. Optical-resolution photoacoustic
               2022;2(1):e202100045.                              microscopy with a needle-shaped beam.  Nat Photon.
               doi: 10.1002/anse.202100045                        2023;17(1):89-95.
                                                                  doi: 10.1038/s41566-022-01112-w
            57.  Noh I, Kim M, Kim J, et al. Structure-inherent near-infrared
               bilayer nanovesicles for use as photoacoustic image-guided   69.  Kim D, Park E, Park J, et al. An ultraviolet‐transparent
               chemo-thermotherapy. J Control Release. 2020;320:283-292.  ultrasound transducer enables high‐resolution label‐
               doi: 10.1016/j.jconrel.2020.01.032                 free  photoacoustic  histopathology.  Laser Photon Rev.
                                                                  2024;18(2):2300652.
            58.  Fasoula N-A, Karlas A, Prokopchuk O, et al. Non-invasive
               multispectral optoacoustic tomography resolves intrahepatic      doi: 10.1002/lpor.202470012
               lipids in patients with hepatic steatosis.  Photoacoustics.   70.  Zhu X, Huang Q, DiSpirito A, et al. Real-time whole-brain
               2023;29:100454.                                    imaging of hemodynamics and oxygenation at micro-
               doi: 10.1016/j.pacs.2023.100454                    vessel resolution with ultrafast wide-field photoacoustic
                                                                  microscopy. Light Sci Appl. 2022;11(1):138.
            59.  Choi W, Park E-Y, Jeon S, et al. Three-dimensional
               multistructural quantitative photoacoustic and US imaging      doi: 10.1038/s41377-022-00836-2
               of human feet in vivo. Radiology. 2022;303(2):467-473.  71.  Zhu  X,  Huang  Q,  Jiang  L,  et  al.  Longitudinal  intravital
               doi: 10.1148/radiol.211029                         imaging of mouse placenta. Sci Adv. 2024;10(12):eadk1278.
                                                                  doi: 10.1126/sciadv.adk1278
            60.  Kim J, Park B, Ha J, et al. Multiparametric photoacoustic
               analysis of human thyroid cancers in vivo.  Cancer Res.   72.  Gatford KL, Andraweera PH, Roberts CT, Care AS.
               2021;81(18):4849-4860.                             Animal models of preeclampsia: causes, consequences, and
               doi: 10.1158/0008-5472.can-20-3334                 interventions. Hypertension. 2020;75(6):1363-1381.
                                                                  doi: 10.1161/hypertensionaha.119.14598
            61.  Yao D-K, Maslov K, Shung KK, Zhou Q, Wang LV. In
               vivo label-free photoacoustic microscopy of cell nuclei   73.  Hemberger M, Hanna CW, Dean W. Mechanisms of early
               by excitation of DNA and RNA.  Opt Lett. 2010;35(24):   placental development in mouse and humans.  Nat Rev
               4139-4141.                                         Genet. 2020;21(1):27-43.
               doi: 10.1364/OL.35.004139                          doi: 10.1038/s41576-019-0169-4
            62.  Wong TT, Zhang R, Zhang C, et al. Label-free automated   74.  Dekan S, Linduska N, Kasprian G, Prayer D. MRI of
               three-dimensional imaging of whole organs by microtomy-  the placenta–a short review.  Wien Med Wochenschr.
               assisted  photoacoustic  microscopy.  Nat  Commun.   2012;162(9):225-228.
               2017;8(1):1386.                                    doi: 10.1007/s10354-012-0073-4
               doi: 10.1038/s41467-017-01649-3
                                                               75.  Rebling J, Ben‐Yehuda Greenwald M, Wietecha M, Werner
            63.  Wong TT, Zhang R, Hai P, et al. Fast label-free multilayered   S, Razansky D. Long‐term imaging of wound angiogenesis
               histology-like imaging of human breast cancer by   with  large  scale  optoacoustic  microscopy.  Adv Sci.
               photoacoustic microscopy. Sci Adv. 2017;3(5):e1602168.  2021;8(13):2004226.
               doi: 10.1126/sciadv.1602168                        doi: 10.1002/advs.202004226
            Volume 10 Issue 4 (2024)                        26                                doi: 10.36922/ijb.3448





