Page 32 - IJB-10-4
P. 32

International Journal of Bioprinting                                       PAI for 3D bioprinted constructs




            6.   Das S, Nam H, Jang J. 3D bioprinting of stem cell-laden   for Type 2 diabetes emulation using 3D cell printing. Adv
               cardiac patch: a promising alternative for myocardial repair.   Funct Mater. 2023;33(22):2213649.
               APL Bioeng. 2021;5(3):031508.                      doi: 10.1002/adfm.202213649
               doi: 10.1063/5.0030353
                                                               18.  Choi S, Lee KY, Kim SL, et al. Fibre-infused gel scaffolds
            7.   Jang J, Park JY, Gao G, Cho D-W. Biomaterials-based 3D cell   guide cardiomyocyte alignment in 3D-printed ventricles.
               printing for next-generation therapeutics and diagnostics.   Nat Mater. 2023;22(8):1039-1046.
               Biomaterials. 2018;156:88-106.                     doi: 10.1038/s41563-023-01611-3
               doi: 10.1016/j.biomaterials.2017.11.030
                                                               19.  Hwang DG, Choi H, Yong U, et al. Bioprinting‐assisted
            8.   Jang J, Yi H-G, Cho D-W. 3D printed tissue models: present   tissue assembly for structural and functional modulation
               and future. ACS Biomater Sci Eng. 2016;2(10):1722-1731.  of engineered heart tissue mimicking left ventricular
               doi: 10.1021/acsbiomaterials.6b00129               myocardial fiber orientation. Adv Mater. 2024:e2400364.
                                                                  doi: 10.1002/adma.202400364
            9.   Kim D, Kang D, Kim D, Jang J. Volumetric bioprinting
               strategies for creating large-scale tissues and organs. MRS   20.  An J, Zhang S, Wu J, et al. Assessing bioartificial organ
               Bull. 2023;48(6):657-667.                          function: the 3P model framework and its validation. Lab
               doi: 10.1557/s43577-023-00541-4                    Chip. 2024;24(10).
                                                                  doi: 10.1039/d3lc01020a
            10.  Yong U, Kim D, Kim H, et al. Biohybrid 3D printing
               of a tissue‐sensor platform for wireless, real‐time, and   21.  Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN,
               continuous monitoring of drug‐induced cardiotoxicity. Adv   Feinberg AW. FRESH 3D bioprinting a full-size model of the
               Mater. 2023;35(11):e2208983.                       human heart. ACS Biomater Sci Eng. 2020;6(11):6453-6459.
               doi: 10.1002/adma.202208983                        doi: 10.1021/acsbiomaterials.0c01133
            11.  Yoon J, Singh NK, Jang J, Cho D-W. 3D bioprinted in vitro   22.  Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan
               secondary hyperoxaluria model by mimicking intestinal-  KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous
               oxalate-malabsorption-related kidney stone disease.  Appl   cell‐laden tissue constructs.  Adv Mater. 2014;26(19):
               Phys Rev. 2022;9(4):041408.                        3124-3130.
               doi: 10.1063/5.0087345                             doi: 10.1002/adma.201305506
            12.  Hwang DG, Jo Y, Kim M, et al. A 3D bioprinted hybrid   23.  Colosi C, Shin SR, Manoharan V, et al. Microfluidic
               encapsulation system for delivery of human pluripotent stem   bioprinting of heterogeneous 3D tissue constructs using
               cell-derived pancreatic islet-like aggregates. Biofabrication.   low‐viscosity bioink. Adv Mater. 2016;28(4):677-684.
               2021;14(1):014101.                                 doi: 10.1002/adma.201503310
               doi: 10.1088/1758-5090/ac23ac
                                                               24.  Glaser AK, Reder NP, Chen Y, et al. Light-sheet microscopy
            13.  Kim BS, Ahn M, Cho W-W, Gao G, Jang J, Cho D-W.   for slide-free non-destructive pathology of large clinical
               Engineering of diseased human skin  equivalent using  3D   specimens. Nat Biomed Eng. 2017;1(7):0084.
               cell printing for representing pathophysiological hallmarks      doi: 10.1038/s41551-017-0084
               of type 2 diabetes in vitro. Biomaterials. 2021;272:120776.  25.  De  Santis  MM,  Alsafadi  HN,  Tas  S,  et  al.  Extracellular‐
               doi: 10.1016/j.biomaterials.2021.120776
                                                                  matrix‐reinforced bioinks for 3D bioprinting human tissue.
            14.  Kim M, Jang J. Construction of 3D hierarchical   Adv Mater. 2021;33(3):e2005476.
               tissue platforms for modeling diabetes.  APL Bioeng.      doi: 10.1002/adma.202005476
               2021;5(4):041506.                               26.  Hafa L, Breideband L, Ramirez Posada L, et al. Light
               doi: 10.1063/5.0055128
                                                                  sheet‐based laser patterning bioprinting produces long‐
            15.  Jang J, Park H-J, Kim S-W, et al. 3D printed complex tissue   term  viable full‐thickness  skin constructs.  Adv Mater.
               construct using stem cell-laden decellularized extracellular   2024;36(8):e2306258.
               matrix bioinks for cardiac repair.  Biomaterials. 2017;112:      doi: 10.1002/adma.202306258
               264-274.                                        27.  Ouyang L, Armstrong JP, Chen Q, Lin Y, Stevens MM.
               doi: 10.1016/j.biomaterials.2016.10.026
                                                                  Void‐free  3D  bioprinting  for in  situ  endothelialization
            16.  Choi Y-m, Lee H, Ann M, Song M, Rheey J, Jang J. 3D   and  microfluidic  perfusion.  Adv  Funct  Mater.
               bioprinted vascularized lung cancer organoid models with   2019;30(1):1908349.
               underlying disease capable of more precise drug evaluation.      doi: 10.1002/adfm.201908349
               Biofabrication. 2023;15(3):034104.              28.  Chen C-W, Betz MW, Fisher JP, Paek A, Chen Y.
               doi: 10.1088/1758-5090/acd95f
                                                                  Macroporous hydrogel scaffolds and their characterization
            17.  Kim  JJ,  Park  JY,  Nguyen  VVT,  et  al.  Pathophysiological   by  optical  coherence  tomography.  Tissue Eng Part C
               reconstruction of a tissue‐specific multiple‐organ on‐a‐chip   Methods. 2011;17(1):101-112.




            Volume 10 Issue 4 (2024)                        24                                doi: 10.36922/ijb.3448
   27   28   29   30   31   32   33   34   35   36   37